
Part I

Fault Isolation Detection Expert
(FIDEX)

Expert System Diagnostics
for a 30/20

Gigahertz Satellite Transponder

I _- _1

Z io

0,-_ r-
_ 0

I-_- _.,

..J_
C_ o. LL ,_

,,t I_ p- ..
"_ ¢_ _ cg tl. ,":L

f I,- _,,,,,- _,...

an

A final report summarizing research
on

Contract NAG3-923

completed at

The Univerisity of Akron

Electrical Engineering Department

Akron, Ohio 44325

for

NASA Lewis Research Center

21000 BrookPark Road

Cleveland, Ohio 44135

submitted by

Dr. John Durkin Associate Professor of Electrical Engineering

Richard Schlegelmilch Masters Student in Electrical Engineering

Donald Tallo Masters Student in Electrical Engineering

March 3 I, 1992

FIDEX

FAULT ISOLATION AND DIAGNOSIS EXPERT

An Expert System for Intelligent Computer Diagnostics of a

Ka-Band Satellite Transponder System

ABSTRACT

The National Aeronautics and Space Administration (NASA), Lewis Research

Center, in Cleveland Ohio, has recently completed the design of a Ka-band satellite

transponder system, as part of the Advanced Communication Technology Satellite

(ACTS) System. To enhance the reliability of this satellite, NASA funded The

University of Akron to explore the application of an expert system to provide the

transponder with an autonomous diagnosis capability. The result of this research was the

development of a prototype diagnosis expert system called FIDEX *_, Fault Isolation and

Diagnosis EXpert.

FIDEX is a frame-based expert system that was developed in the NEXPERT

Object" development environment by Neuron Data, Inc. It is a MicroSoft" Windows"

version 3.0 application, and was designed to operate on an Intel i80386 based Personal

Computer system.

IAntecedent to the publicationof a thesis by DonaldTallo, an application has been made for the
licence of Copyright. FIDEX, in the context of Fault Isolation and Diagnostic Expert, will be
protected underthat licence.

As a frame-based system, FIDEX uses hierarchical structures to represent such

items as the satellite's: subsystems, components, sensors, and fault states. Its overall

frame architecture integrates these hierarchical structures into a lattice that provides a

flexible representation scheme and facilitates the maintenance of the knowledge-based

system. To overcome limitations on the availability of sensor information, FIDEX uses

an inexact reasoning technique based on the incrementally acquired evidence approach

that was developed by Shortliffe during his MYCIN project. The system is also designed

with a primitive learning ability through which it maintains a record of past diagnosis

studies. This permits it to search first for those faults which are most likely to occur.

And finally, FIDEX can detect abnormalities in the sensors which provide information

on the transponder's performance. This ability is used to first rule out simple sensor

malfunctions.

The overall design of the FIDEX system, with its generic structures and

innovative features, makes it an applicable example for other types of diagnostic systems.

This report discusses these aspects of FIDEX and summarizes the research involved in

its development.

ii

ACKNOWLEDGEMENTS

The authors would like to take this opportunity to acknowledge several individuals

who have contributed to the completion of this research. We would first like to thank

Edward Petrik for providing us the opportunity to pursue this research for NASA. His

commitment to this research and his patience has been an invaluable asset to us. We

would also like to thank Robert Kerczewski and James Svoboda for their time and

patience. It has been their knowledge and all they have taught us that has made the

development of the FIDEX system possible.

.o.

III

FIDEX

FAULT ISOLATION AND DIAGNOSIS EXPERT

An Expert System for Intelligent Computer Diagnostics of a

Ka-Band Satellite Transponder System

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vi

LIST OF EQUATIONS vii

LIST OF CODE SEGMENTS vii

CHAPTERS

I. INTRODUCTION

1.1 Overview of the Application Area

1.2 Project Definition

1.3 General Approach to Solution

II. DEVELOPMENT ENVIRONMENT

III. KNOWLEDGE ENGINEERING

3.1 Frame-Based Architecture

3.2 Modular Approach to Diagnostics

3.3 Reasoning Techniques

3.4 Learning and the Adaptive Search Strategy

1

2

21

24

28

30

30

35

35

4O

iv

IV. 42

4.1 42

4.2 55

4.3 63

4.4 68

V. FIDEX KERNEL KNOWLEDGE BASE 73

5.1 Inference Strategies 73

5.2 Initialization of Object/Class Parameters 75

5.3 Definition of Blackboard Objects 95

5.4 Definition of Objects/Properties for Rule Hypotheses 95

5.5 Object/Class Dynamics and Slot Actions 97

VI. FAULT DETECTION MODULE KNOWLEDGE BASE 116

VII. FAULT ISOLATION MODULE KNOWLEDGE BASE 119

7.1 Isolation of Faults to Transponder Subsystems 121

7.2 Validation of Sensory Information 122

VIII. FAULT DIAGNOSIS AND RESPONSE KNOWLEDGE BASES 124

8.1 Learning and Adaptive Search Strategies 125

8.2 Subsystems Diagnostic Modules 128

IX. SUMMARY OF RESEARCH 131

REFERENCES 133

APPENDICES

KNOWLEDGE REPRESENTATION

Representation of Transponder System Components

Representation of Transponder Subsystems

Representation of Sensory Components

Representation of Fault States

A. FIDEX KERNEL KNOWLEDGE BASE 136

B. FAULT DETECTION KNOWLEDGE BASE 169

C. FAULT ISOLATION KNOWLEDGE BASE 170

D. RECEIVER SUBSYSTEMS DIAGNOSTIC KNOWLEDGE BASES . . . 171

E. MATRIX SWITCH SUBSYSTEM DIAGNOSTIC KNOWLEDGE BASE 185

F. UPCONVERTERSUBSYSTEMSDIAGNOSTIC KNOWLEDGE BASES 188

G. HIGH POWERAMPLIFIER DIAGNOSTIC KNOWLEDGE BASES . . . 196

H. SITE RELATED PUBLICATIONS 204

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(3.1)

(3.2)

(3.3)

(3.4)

LIST OF FIGURES

Page

The ACTS Communication System 3

SITE Model of the ACTS Transponder System 5

Characteristics of a GaAs FET Amplifier 13

Characteristics of a Traveling Wave Tube Amplifier 16

Computer Control and Monitoring Interface 18

Components Class Hierarchy 31

Subsystems Class Hierarchy 32

Sensors Class Hierarchy 33

Fault States Class Hierarchy 34

(1.1)

(1.2)

(2.1)

LIST OF TABLES

Page

Components of the ACTS Transponder System 7

Permutations of Signal Paths Through Matrix Switch 10

NEXPERT Object" System Requirements 29

vi

(3.1)

(3.2)

LIST OF EQUATIONS

MYCIN Technique for Accumulation of Measures of
Belief and Disbelief

MYCIN Technique for Certainty Factor Analysis

Page

38

38

LIST OF CODE SEGMENTS

(4.1)

(4.2)

(4.3)

(4.4a)

(4.4b)

(4.5a)

(4.51))

(4.6)

(4.7)

(4.8)

(4.9a)

(4.9b)

(4.10)

(4.11)

Properties of the COMPONENTS Class

Definition of the COMPONENTS Class

Properties of the COMPONENTS SubClasses

Definition of the COMPONENTS SubClasses

Definition of the COMPONENTS SubClasses

Objects of the COMPONENTS Class

Objects of the COMPONENTS Class

Properties of the SUBSYSTEMS Class

Definition of the SUBSYSTEMS Class

Objects of the SUBSYSTEMS Class

Dynamic Objects of the SUBSYSTEMS Class

Dynamic Objects of the SUBSYSTEMS Class

Properties of the SENSORS Class

SENSORS Class Hierarchy

(4.12a) BER_SENSORS Objects

(4.12b) PWR_SENSORS Objects

(4.13) Properties of the FAULT_STATES Class

(4.14) Properties of the CERTAINTY_ANALYSIS Class

Page

43

46

47

48

51

53

54

56

58

59

61

62

64

65

67

68

69

7O

vii

(4.15)

(4.16)

(4.17)

(5.1)

(5.2a)

(5.2b)

(5.2c)

(5.3a)

(5.3b)

(5.3c)

(5.4a)

(5.4b)

(5.4c)

(5.5)

(5.6a)

(5.6b)

(5.6c)

(5.6d)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Definition of the CERTAINTY ANALYSIS Class

Definition of the FAULT STATES Class

Subclasses of the FAULT_STATES Hierarchy

Global Inferencd Strategy Definitions

Initialization

Initialization

Initialization

Initialization

Initialization

Initialization

of < [COMPONENTS

of < [COMPONENTS

of < [COMPONENTS

of <]COMPONENTS

of < [COMPONENTS

of <]COMPONENTS

I > .NAME

[> .NAME

[> .NAME

]> .DESCRIPTION

[> .DESCRIPTION

[> .DESCRIPTION

Slot Actions to Retrieve & Initialize Properties of
the COMPONENTS Class

Slot Actions to Retrieve & Initialize Properties of
the COMPONENTS Class

Slot Actions to Retrieve & Initialize Properties of
the COMPONENTS Class

Initialization of < [SUBSYSTEMS]> .NAME

Initialization of < [SUBSYSTEMS I > .SENSOR_IN / _OUT

Initialization of < [SUBSYSTEMS I > .SENSOR_IN / _OUT

Initialization of <]SUBSYSTEMS I > .SUBSYSTEM_IN / _OUT

Initialization of < [SUBSYSTEMS] > .SUBSYSTEM_IN / _OUT

Definition of Hypothetical Signal Power Level Sensor PM_0

Initialization of < [SENSORS[> .NAME

Initialization of < [SENSORS[> .DESCRIPTION

Initialization of < [BER_ / PWR_SENSORS [> .TYPE

Slot Actions to Retrieve & Initialize Properties of
the SENSORS Class

Definition of Blackboard Objects

7O

71

72

74

76

77

78

78

79

80

81

82

83

84

86

87

88

89

9O

91

92

.93

94

95

Vlll

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(6.1)

(7.1)

(7.2)

(8.1)

(8.2)

(8.3)

(8.4)

Definition of Objects/Properties for Rule Hypotheses 96

Propagation of Signal Power Levels Through Components 98

Propagation of Modeled Signal Power Levels Through Components... 100

Propagation of Signal Power Levels Through Multiple Port Components 101

Sources for Matrix Switch Configuration 102

Rules That Model the Matrix Switch Signal Paths as SUBSYSTEMS . . 103

Qualitative Descriptions for SUBSYSTEMS Input/Output Quantities . . 104

Dynamics of < ISUBSYSTEMS] >.ISOLATED 105

Chaining to Diagnostic Modules 106

Slot Actions for Qualitative Descriptions of Sensor Quantities 108

Rules to Ascribe Qualitative Descriptions to Sensor Levels 109

Rules to Ascribe Qualitative Descriptions to Sensor Readings 110

Slot Actions for MYCIN Technique and Certainty Analysis 112

Rules to Ascribe Qualitative Descriptions to Confidence Factors 113

Definition of GUI Interactive Slots 114

Rules Required by ToolBook" Interface 115

Rules for the Detection of a Fault 117

Rules for the Isolation of a Fault 120

Rule for the Validation of Sensor Data 122

Linking of FAULT_STATE Inference Slots 126

Retrieval of <]FAULT_STATES]> .INF_CAT 127

Storing < [FAULT_STATES] > .INF_CAT 127

Incrementing <]FAULT_STATES] > .INF_CAT 128

ix

CHAPTER I

INTRODUCTION

The satellite network of the United States supports both the commercial and

military sectors by providing an effective world-wide communication network. The

reliability of this network represents a strategic resource for this country and a critical

concern for the National Aeronautics and Space Administration (NASA).

At present, the reliability of these satellite communication links are maintained

through the intervention of ground terminal personnel. They use status information

transmitted from the satellite to assess the possibility of system problems. Should these

personnel suspect a problem with the satellite, a prescribed fault diagnosis/response

strategy is followed. This process utilizes telemetry with mechanisms onboard the

satellite to obtain required diagnostic information. Corrective measures are then

communicated back to the switching mechanisms onboard the satellite which substitute

redundant components.

This process can only occur when the satellite is within communication range;

during fly-by. Otherwise, telemetry with the satellite is not possible. This limitation

poses little problem for satellites in geosynchronous orbits because they are in constant

communication with their controlling ground terminals. However, many satellites in the

U.S. network are in asynchronous orbits. These satellites can be out of telemetry with

their controlling ground stations for as much as 50% of the time. This situation

represents a significant handicap in the maintenance of these communication links.

2

Current research in artificial intelligence (AI) has sought to resolve this problem

by increasing the capabilities of the satellite's onboard diagnostic software. Since the

mid 1980's, NASA has been investigating AI technology to develop a diagnostic expert

system which could be placed onboard the spacecraft. If such a system could replicate

the diagnostic tasks that are performed by the ground terminal personnel, it could provide

the satellite with an autonomous diagnosis capability.

Success in this effort would offer the potential of significantly improving the

reliability of satellite communication systems. Stephan [36] believes that achieving a

high level of autonomy could allow the satellite to operate for months without ground

contact. Such an enhancement could significantly reduce the cost of ground operations.

In the summer of 1988, NASA-Lewis Research Center funded The University of

Akron to study the application of such a diagnosis expert system. This report discusses

that study and the resulting prototype expert system called FIDEX, Fault Isolation and

Diagnosis Expert.

1.1 Overview of the Application Area

NASA has recently completed the design of a Ka-band (30/20-GHz)

communication satellite transponder. This transponder system is to be integrated within

the Advanced Communication Technology Satellite (ACTS) System and deployed early

in 1993. The ACTS transponder is a multiple channel repeater which relays microwave

communication signals between highly localized ground terminals. All references to the

transponder in this report are directed towards the components of the communication

system that will reside onboard the satellite.

1.1.1 Overview of the ACTS Communication System

3

Figure 1.1 illustrates the ACTS communication system. The center figure,

resembling a communication satellite, represents the ACTS transponder onboard the

satellite. It is a typical multiple channel satellite transponder. Each channel of this

system has an input and an output which are inter-linked through a matrix switch.

A.C.T.S. Tfo ns:ponder

A.C.1.S. A.c.'r.s.
Ground "lermlnol Ground "[ermlnol

Figure 1.1: The ACTS Communication System

The transponder receives its inputs on a channel up-link from a ground terminal

system. In the input channel, this signal is first amplified and then down-converted from

the up-link frequency to an intermediate frequency (IF) signal. The IF signal is routed

through a matrix switch to one of the output channels. There, the IF signal is up-

converted to the broadcast frequency, amplified, and broadcast on a down-link to the

proper destination ground terminal system.

in the current phase of SITE; SITE Phase II.

of a two channel system.

Only two channels are being implemented

Therefore, this discussion is limited to that

4

Associatedwith each channelthrough the transponderis a ground terminal

system. They are represented in Figure 1.1 by the two satellite dishes. These stations

are currently in a state of development similar to the transponder system. In fact, the

actual units are not being used in the SITE testing of the transponder. Simulated ground

stations have been substituted in their place until the entire system is ready for integration

testing. Therefore, the following discussion is limited to that of ground stations in

general, and not specific to the ACTS ground terminals.

Ground terminals represent the places of origin and destination for the signal

transmitted through the transponder system. Respectively, these stations are called the

originating and receiving ground terminals. In an originating ground station, digital

information is encoded into a modulated signal. The modulated signal is up-converted

to the up-link frequency, amplified and broadcast to the satellite. The satellite routes this

signal as discussed above, and transmits it to the receiving ground terminal. In the

receiving ground station, the down-link signal is amplified, down-converted, and

demodulated back into digital information. In this manner, these three systems work

together to provide cross-link communication between two geographically isolated places.

The remainder of this section explains the inner workings of the transponder

system. This discussion, however, is limited to the workings of the SITE model of the

transponder.

1.1.2 Overview of the ACTS Transponder System

Figure 1.2 shows a schematic representation of the ACTS transponder. At

present, only two of the multiple channels are implemented in its design. However, this

proof of concept design can easily be expanded to incorporate additional links as the

system design progresses.

1
C}]]RCV_

Chl UpLL_k

PI4-5
PM..7

Chl DownLink

Pa..! PM-2

W_I'ITCH

•
Pu3 _ _ b_ PR-4

HPAPC CHi I,QX / CH2MIX HPAPC

UPII,O

[
Cl-]L:'RO/R

Ch2 UpLink

PR-8

Ch2 DownLL,ak

Figure 1.2: SITE Model of the ACTS Transponder System

At present, the design of this transponder is being evaluated within the System

Integration, Test, and Evaluation (SITE) testbed at NASA-Lewis. The SITE laboratory 2

is used by NASA for validating designs and demonstrating the capabilities of satellite

communications systems. This phase of development is valuable to NASA for refining

the response of the various systems onboard the transponder. Another important aspect

of SITE is the formulation of an understanding of these systems' fault response.

The first phase in the development of FIDEX was to study the diagnostic

knowledge used by SITE personnel. This investigation began by studying the workings

of the application area under normal conditions. This section is dedicated to

summarizing that investigation. It is included to provide the background information on

the ACTS transponder required by later discussions. For more detailed information on

2Space Electronics Division (SED), NASA-Lewis Research Center, Cleveland Ohio 44135

6

the transponder, please refer to the several papers listed in the SITE Related Publications

appendix.

The transponder is the part of the communication system which routes signals

between ground terminals. It consists of all dements of the communication system which

will reside onboard the satellite. This system is a comparatively small part of the

satellite system. Other major systems onboard the spacecraft include power systems,

diagnostic systems, telemetric systems, etc.

transponder. Therefore, references to the

transponder system onboard.

This discussion is limited only to the

satellite are implicitly directed to the

Figure 1.2 shows the configuration of the transponder in its current SITE phase.

As stated earlier, only two channels through the matrix switch are currently implemented.

This will change as additional signal paths are added in future testing phases. However,

the principles discussed here apply to any number of channels.

Table 1.1 provides a legend for the labels in Figure 1.2. The names in the table

are functionally descriptive. They are not the names used by NASA personnel. The

following discussion traces the functionality of each transponder element listed in this

table.

Again, this section is only intended to provide background information on the

workings of the transponder system. Therefore, each component's operation is discussed

in a general manner regarding its function in system operation.

Table 1.1: Components of the ACTS Transponder System

7

CH1RCVR
CI=I2RCVR

RCVRLO

MSWITCH
CHIMIX

CH2MIX

UPXLO
GaAsFET

TWTA

A
B

C
D

G

H
I

J

K

L
M

N

PM 1

PM 2
PM 3

PM 4
PM 5

PM6
PM 7
PM 8

Major Transponder Components:
Channel 1 Receiver Unit
Channel 2 Receiver Unit

Receiver Unit Local Oscillator
Matrix Switch

Channel 1 Up-Converter Mixer

Channel 2 Up-Converter Mixer
Up-Converter Mixer Local Oscillator
GaUium-Arsenide Field Effect Transistor Amplifier

Traveling Wave Tube Amplifier

Intermediate Frequency Power Control (IFPC) Amplifiers:
Channel 1 Matrix Switch Input IFPC Amplifier

Channel 2 Matrix Switch Input IFPC Amplifier
Channel 1 Up-converter Input if'PC Amplifier

Channel 2 Up-converter Input IFPC Amplifier

Intermediate Frequency Power Control Attenuators:

Channel 1 Matrix Switch Input IFPC Attenuator
Channel 2 Matrix Switch Input IFPC Attenuator

Channel 1 Up-converter Input if:PC Attenuator

Channel 2 Up-converter Input IFPC Attenuator

High Power Amplifier Input Power Control (HPAIPC) Amplifiers:
Channel 1 HPAIPC Driver Amplifier

Channel 2 HPAIPC Driver Amplifier

High Power Amplifier Input Power Control Attenuators:

Channel 1 High Power Amplifier Input Attenuator
Channel 1 HPAIPC Driver Input Attenuator

Channel 2 HPAIPC Driver Input Attenuator

Channel 2 High Power Amplifier Input Attenuator

Signal Power Level Sensors:
Channel I Matrix Switch Input Signal Power Level Sensor

Channel 2 Matrix Switch Input Signal Power Level Sensor

Channel 1 Up-converter Input Signal Power Level Sensor

Channel 2 Up-converter Input Signal Power Level Sensor
Channel 1 HPA Input Signal Power Level Sensor

Channel 2 HPA Input Signal Power Level Sensor
Channel 1 HPA Output Signal Power Level Sensor

Channel 2 HPA Output Signal Power Level Sensor

Transponder System Control and Monitoring

8

The first components of interest are those designated as PM_I through PM_8 in

Figure 1.2. These components represent the transponder signal power level sensors

which are present in the SITE Phase II model. These signal power level sensors report

the power level of the transponder signal at various key locations throughout the system.

All sensor readings are made available as diagnostic information via two sources. First,

each sensor has a digital display which is visible on the transponder system control panel.

This display offers a visual means of obtaining power meter readings.

The second source for accessing sensory information is accomplished through an

interface with a specialized computer called the Experiment Control and Monitoring

(EC&M) Computer. This computer is discussed in greater detail later in this section.

Experiment control is provided by the adjustment of the attenuators within the

transponder. These attenuators can be either controlled manually or via an interface with

the EC&M computer. Additionally, these attenuator settings are monitored by the

EC&M and can be reported by either visual displays or interfacing with this computer.

The power meters are also interfaced with the EC&M computer. This interface provides

computer access to signal power level readings at the sensor locations.

With this understanding of transponder control and monitoring, the workings of

this system can be discussed on a component by component basis. Again, this discussion

is based upon the workings of the transponder system during testing and evaluation

experiments.

The two channels of the transponder system are symmetrical about the matrix

switch. Each channel has both an input and an output. A channel's input consists of all

components responsible for receiving an up-link broadcast and preparing it for input to

9

the matrix switch. A channel's output consistsof all componentsresponsiblefor

preparingthe signal for broadcaston the down-link.

Uplink Receivers and IF Frequency Conversion

Channel 1 and 2 input channels are symmetrical about the matrix switch and can

be discussed together. They receive up-link signals from their corresponding ground

terminal system. This input signal is the modulated data stream being broadcast at 30

GigaHertz (GHz) from the ground terminals. The 30-GHz Low Noise Receiver units on

the channel 1 and 2 inputs, CH1RCVn and CH2RCVR in Figure 1.2, receive the up-link

signal at a very low signal power level. The receiver units must provide the necessary

amplification and down-convert the signal frequency to 2.5-GHz, the Intermediate

Frequency (IF) level.

This frequency down-conversion is accomplished via mixing with a local oscillator

(LO) unit. Associated with both receiver units is the Receiver Local Oscillator, shown

as component RCVed.O in Figure 1.2. This LO unit provides the 2.5-GHz reference

necessary for down-conversion to the IF frequency.

After down-conversion, the IF signal power levels are controlled by components

a, B, G, and H. The Intermediate Frequency Power Control (IFPC) Amplifiers,

components ,4 and B, provide a constant 43-dB amplification to the IF signal. This high

gain is Compensated for by the IFPC Attenuators, components a and n. These

attenuators are under control of the EC&M Computer and are incrementally adjustable

in 1-dB steps. This control allows the IF signal power level to be maintained to within

1-dB of its nominal level before input to the matrix switch. The IF signal power levels

at the input to the matrix switch are monitored by the IF Power Level Sensors, t'MJ and

PM_2, and reported to the EC&M computer.

Ford Microwave Matrix Switch

10

Interconnectivity between channel inputs and outputs is provided by the

Microwave Matrix Switch, component MSWITCH in Figure 1.2. This matrix switch is a

switching unit having multiple input and output channels. The internal switching

mechanisms provide cross point connections for a full permutation of signal paths

through the switch. However, in the transponder's current phase of development, only

two channels are implemented, channel 1 and channel 2. Consequently, only two of the

many channels of the matrix switch are in use. This provides a total of four possible

paths through the matrix switch. Table 1.2 shows the permutations of paths through the

matrix switch.

Table 1.2: Permutations of Signal Paths Through Matrix Switch

Signal Path:
PATH 11

PATH12

PATH21

PATH22

Switch Interconnectivity:

Channel 1 Input - Channel 1 Output

Channel 1 Input - Channel 2 Output

Channel 2 Input -- Channel 1 Output

Channel 2 Input -- Channel 2 Output

Inherent to the switching mechanisms, internal to the matrix switch and dependant

upon signal path, is a certain degree of attenuation to the IF signal. Consequently, after

signal path switching, the IF signal power level must be adjusted to maintain a proper

signal strength. This signal power level control is affected by a second set of IFPC

units, components c, D, t, and J in Figure 1.2. The IFPC Amplifiers, components c and

D, again provide a constant 45-dB amplification to this signal, allowing the IFPC

Attenuators, components P and Q, to provide 1-dB step control over the IF signal

11

strength. The IF signalpower levelsare monitoredand reportedto the EC&M by IF

SignalPowerLevel SensorsPM_3 and eM_4.

The channel outputs of the transponder system are responsible for preparing the

IF signal for broadcasting on the down-link to the ground terminal systems. After

switching, the transponder IF signal is considered to be in the output channel of its path

through the transponder system. Again, the channel outputs of the transponder system

are symmetrical about the matrix switch. The only exception to this symmetry occurs

at the high power broadcast amplifiers before down-link. This exception is discussed

later.

IF/Downlink Frequency Conversion

At this point in the component discussion, the signal has been directed through

the matrix switch to its proper output channel. It is now ready to be prepared for

transmission to the ground terminals. The first step in this preparation of the signal for

broadcast is the frequency up-conversion of the 2.5-GHz IF signal to the 20-GHz

broadcast frequency. This is accomplished by components CHIMIX and CH2MIX, which

are the Transponder System Up-converter Multiplexers. These units combine the 2.5-

GHz IF signal with a 20-GHz reference signal provided by the Transponder System Up-

converter Local Oscillator, component vPXZ.o in Figure 1.2.

After mixing, the signal power levels must be adjusted before input to the high

power broadcast amplifier units, components c,axsFET and TWTA. This is accomplished

by the High Power Amplifier Input Power Control (HPAIPC) units which follow the

multiplexers, components e through N. The first HPAIPC attenuators in the output

channel, components L and M, are fixed devices which provide a constant attenuation.

Next, the HPAIPC Driver Amplifiers, components E and F, amplify the signal between

12

25 to 31-dB. The subsequent attenuators, HPAIPC attenuators, components K and N, are

rotary vane pin diode attenuators which are continuously variable. This continuity in

their adjustment allows the EC&M computer to have precise control of the signal power

level on input to the high power broadcast amplifier units. The signal power levels at

the input to the broadcast amplifiers are monitored and reported to the EC&M Computer

via power sensors PM_5 and PM_6.

The two high power amplifier units, now amplify the signal for broadcast on the

down-link to the ground terminals. This is the point where the symmetry of the output

channels fails. These amplifiers perform similar functions in the operation of the

transponder system. However, they are distinctly different units and must be discussed

separately.

Gallium Arsenide (GaAs) FET Amplifier

Component _-_7", the 20-GHz Solid State Amplifier, at the output of channel

1, is a Gallium Arsenide Field Effect Transistor (GaAs FET) amplifier unit. This

amplifier unit can be configured to operate at various set-points along its Input vs. Output

(I/O) characteristic curve. By establishing a set-point, this amplifier can be configured

to operate in one of three different modes; in a linear mode, in 1-dB compression or in

a saturation mode. The following discussion helps to explain the multiple set-points for

operation of an amplifier unit.

As for any amplifier, the gain of the GaAs FET amplifier can be plotted as the

magnitude of its output power level versus the magnitude of its input power level. This

plot is often called the characteristic curve of the amplifier. Figure 1.3 shows a typical

characteristic curve for a GaAs FET Amplifier. This figure is only intended to provide

a conceptual understanding of the linear, compression and saturation ranges of amplifier

characteristiccurves.

amplifier specifically.

13

It is not scaled to provide characteristic data about the GaAs FET

0
U

t
Linear

pa

0

W

e

r

1-dB
Compression

Input Power (dBm)

Figure 1.3: Characteristics of a GaAs FET Amplifier

This curve shows the non-linear relationship between the power at the output of

an amplifier for a given input power level. Furthermore, this curve shows that the

behavior of an amplifier is not consistent over the entire range of inputs. However,

some generalizations can be made about amplifier behavior over specific regions of the

curve.

Although the characteristic curve is never actually linear, the lower end of the

input power scale exhibits a behavior which approximates a linear relationship. The

range of input power levels which produce this nearly linear characteristic is therefore

called the Linear Range. Figure 1.3 shows this linear behavior in the range marked

14

"Linear." Notice that over this range, the characteristics of the amplifier could be

approximated by a straight line.

As the input power level is increased beyond this "Linear" range, the nonlinear

parameters of an amplifier begin to become more pronounced. The characteristic curve

begins to lose its linearity and compresses to a line of zero slope. Additionally, this

compression is not constant and increases proportionally with the input power level.

However, over a specific band of input power levels, the compression of the curve can

be approximated as a 1-dB compression ratio. This range is therefore called the "1-dB

Compression" range and is noted in Figure 1.3.

As the magnitude of the input power level is increased beyond this 1-dB

compression range, the compression of the characteristic curve becomes very

pronounced. Its slope begins to approach zero rapidly, as the amplifier unit approaches

saturation. The band of all input power levels above the 1-dB compression range exhibit

this behavior. Therefore, this band of input power magnitudes is called the "Saturation"

range and is also indicated on Figure 1.3.

The configuration of the broadcast amplifier has a direct effect on the quality or

accuracy of the communication signal. Ideally, an amplifier operates most efficiently

near its saturated region. Near this range, the amplifier is providing the highest possible

gain to an input signal. However, as the operating point of the amplifier approaches

saturation, the amount of noise induced in the transmitted signal becomes greater. This

noise is induced by the saturated amplifier as an increase in the harmonic content of the

signal. Data bit errors begin to occur when this noise rises above a certain threshold

limit.

To prevent any loss of data in the modulated signal being transmitted through the

satellite transponder, a set-point should be chosen in the linear region of operation.

However, the gain characteristics of the amplifier in the linear range do not provide for

15

efficient amplification of the broadcast signal. Consequently, a trade-off must be made

between the broadcast power required for efficient transmission and the linearity required

for accurate transmission of data through the transponder.

Multi-Mode Traveling Wave Tube Amplifier (TWTA)

Component TWTA, the 20-GHz Multi-Mode Traveling Wave Tube Amplifier at the

output of channel 2, is a Traveling Wave Tube Amplifier (TWTA). This amplifier can

be configured to operate in various power modes. This multi-mode behavior allows the

amplifier to operate along several characteristic curves; as opposed to a single curve like

the GaAs FET. Specifically, the Multi-Mode TWTA can operate along one of three

characteristic curves; each corresponding to one power mode of the TWTA. Figure 1.4

shows typical power characteristics for a Multi-Mode TWTA.

The Low Power Mode is designed for optimal efficiency in broadcast power. The

gain of this mode is limited. However, under normal atmospheric conditions, this mode

of operation should provide sufficient broadcast power for communication with the

ground terminals.

However, adverse atmospheric conditions often require a satellite to step up its

broadcast power to overcome interferences. This TWTA can be stepped up to a Medium

Power Mode to provide this compensation. The Medium mode of operation provides a

higher gain and therefore an increase in the strength of the broadcast signal. The

consequence is a greater power consumption by the amplifier unit.

Similarly, should additional gain be required beyond that of the Medium Power

Mode, a third configuration of the TWTA modes is available. The High Power Mode

provides a very high gain to compensate for extremely strong atmospheric interferences,

such as rain.

16

0
U

t

P
U

p a

0

W

e

l"

High Power Node

Hedium Power Node

Input Power (dBm)

Figure 1.4: Characteristics of a Traveling Wave Tube Amplifier

In addition to having the multi-mode capabilities, the TWTA can also be

configured to operate at various set-points along each of its characteristic curves. Similar

to the GaAs FET, the TWTA can operate linearly, in compression or in saturation. It

has three operating points in each power mode; resulting in a total of nine possible

configurations for the TWTA.

The final components in the transmission paths through the transponder system

are the transponder signal power level sensors PM_7 and PM_8. After amplification by one

of the broadcast amplifiers, the power levels of the down-link signal is reported to the

EC&M via these sensors. These sensor readings indicate the output power of the

transponder system, as the signal is transmitted to one of the ground terminals. In the

17

current phase of development, transmission of the signal to and from the ground

terminals is simulated by a direct wave guide link.

In summary, the transponder system consists of many components responsible for

receiving, routing and broadcasting a communication signal between the ground

terminals. A signal is received on a channel up-link from its originating ground terminal

system. This signal is then down-converted in frequency to an intermediate frequency

and routed through a matrix switch. This matrix switch is a switching network which

channels a signal through one of four possible paths. After switching, the signal is up-

converted in frequency and amplified by high power amplifiers and then broadcast on a

channel down-link to its destination ground terminal.

The next section looks into the computer control and monitoring performed by the

various computer systems associated with the transponder and ground terminal.

1.1.3 Overview of Computer Control & Monitoring

The final topic of discussion in this overview is the computer network responsible

for the control and monitoring of the satellite transponder and ground terminal systems.

Figure 1.5 is an interface diagram which shows this network.

18

SATELLITE TRANSPONDER

StaTe._ A,_ J'

__J o.,PUT/
t_E_mL---_7 T_TA•

POWER
COHTROL

RTTEHT]POldER

°°+l '+J
!

EXPERI HENT __J
COHTROL &

NOHI TORI HG
COHPUTER

HRTRIX SI4I TCH
COHFI GURRTI OH

(DIGITRL]
__ 3B ROUTING

CHz < PROCESSOR

TJ4TR POWER I
PROCESS I NC UHIT

I CONTROL l,<:°+.**,,
,®

HOD

RECUR/DEHOD _

,°'T*,_ REGS.ITER.,++..RS

Figure 1.5: Computer Control and Monitoring Interface

Digital Ground Terminal

The first computer network of interest is a group of digital processors located in

the ground terminal system. This group is collectively called the Digital Ground

Terminal. It is comprised of the three simulated user terminals and the Data Bit Error

Rate Registers. Again, as stated earlier, these processors are only present to simulate

the existence of users. The actual ground terminal computer is currently under

independent development, therefore, this discussion is limited to the operation of the

simulated user processors.

Located in the bottom right hand comer of Figure 1.5 are three blocks labeled as

User Terminals. In the current stage of development for this system, only three system

19

users are being simulated. It is these three processors which are used to simulate the

users. Each user terminal originates an individual data set to be transmitted through the

communication system. During experimentation, large data sets are required for

transmission. To accomplish this generation of a large data set, each user terminal

generates a pseudo-random stream of bits. This data it then transmitted digitally to the

signal processing components of the ground terminal.

The signal processing components transmit this data through the satellite

transponder system and then returns it digitally to the appropriate users. After the

transmitted data is received at the appropriate user terminal, the data stream is checked

for bit errors. This is accomplished by an Exclusive-OR (XOR) with the bits of the

original data stream. The total of "Missed Bits" is calculated and a Bit Error Rate (BER)

This BER is simply the ratio of missed bits to the number of bitsdetermined.

transmitted.

This BER provides useful information about the performance of the

communication under the experimental conditions. Therefore, the results of error

checking for each of the users are stored in the three BER Registers shown in Figure 1.5.

Since these registers are also digital components involved in the generation and

evaluation of digital data, they are included in the network as part of the Digital Ground

Terminal. In all, the components of this network, collectively called the Digital Ground

Terminal, are responsible for the generation and evaluation of data to be transmitted

during the testing and evaluation of the transponder system.

Network Control Computer

The next computer of interest is the block in Figure 1.5 labeled as the Network

Control Computer (NCC). This computer is responsible for evaluating information from

20

the Ground Terminal System and appropriate control of the Transponder System. Its

primary task is two fold. First, it must control the routing of the transmitted signal

through the transponder system. And second, it must compensate for atmospheric

disturbances by controlling the output signal power level of the satellite broadcast

amplifiers.

The NCC receives input from the simulated ground terminal users for the proper

configuration of the matrix switch in the transponder system. Then, it configures the

matrix switch to assure proper routing of data transmitted through the transponder. The

NCC also is responsible for controlling the output power levels of the transponder's

broadcast signal. The primary reason for this output power level control is compensation

for power losses which result from atmospheric disturbances, commonly called "Rain

Fade." Located in the signal processing portion of the ground terminal system is a rain

fade sensor. This sensor detects power attenuation caused by the rain fade simulator.

When the down-link signal power level, reported by the rain fade sensor, falls below a

certain threshold, the NCC directs the power processing unit of the Multi Mode TWTA

to compensate for this attenuation by changing power modes. Conversely, to save

power, if the rain fade sensor reports a decrease in attenuation, the NCC instructs the

TWTA's power processing unit to change to a lower power mode to compensate.

Experiment Control & Monitoring Computer

In the current phase of integrating, testing, and evaluating the transponder and its

associated ground terminals, all operation is controlled and evaluated by the EC&M

Computer. This computer is responsible for controlling all adjustable attenuators and the

reporting of all sensory information.

21

Severalattenuatorsettingscan be controlled and reported by this computer.

Thesesettingsare controlled by an analogvoltagegeneratedvia an interface with the

EC&M. The magnitudeof this controlvoltageis alsoavailablefor reporting thecurrent

levelsof attenuationin thesesettings.

In additionto controllingthetranspondersystemsignalpower levels, theEC&M

alsoprovidesa meansof monitoringandevaluatingtheconditionof thetransponderand

associatedground terminalsby reportingsensoryinformation. Thereare fifteen sensory

inputsto theEC&M which reportthereadingsof theninetranspondersignalpower level

sensorsand six datastreambit error rates.

In the current phaseof developmentof FIDEX, there is no direct interface

betweenthis EC&M computerandthe diagnosticprocess. Currently, this information

is input via user interrogation. However, the availability of this datawould lend to a

future implementationof an interface between this expert system and the EC&M

computer. This conceptis discussedin greaterdetail, when appropriate,later in this

report.

1.2 Project Definition

The goal of this research project was to investigate the possibility of representing

the knowledge gained during SITE in a diagnostic expert system. Such a study would

then help to lay groundwork for a future system capable of providing the transponder

with autonomous diagnosis capability. The research for this project progressed according

to several key developmental phases:

o Domain Analysis: Study the operation of the application system under both normal and

abnormal conditions

2. Knowledge Acquisition: Study and organize the knowledge used by the domain experts who

perform fault diagnostics on application system

3. Knowledge Representation: Design a scheme to model the application system and represent

the knowledge required to detect, isolate, and diagnose its fault states

4. Response Strategy Definition: Establish response strategies and procedures for all fault states

5. Prototype Development: Develop, test, and modify a series of evolutionary prototype

diagnostic expert systems

6. Requirements Definition: Define the overall specifications for the final deliverable diagnostic

expert system

7. Final Development: Design, encode, integrate, test, and document the final deliverable

expert system

8. Life Cycle Analysis: Define and specify a maintenance schedule for the deliverable diagnostic

expert system

22

During these phases of development, several problems were encountered which

reshaped the requirements of the project. Three problems of particular interest resulted

from the evolutionary state of the ACTS transponder system. The requirements which

these difficulties added to the project, and their solutions, highlight the major strengths

of this expert system.

The first of these difficulties became evident during domain analysis. The expert

system was constrained to work with limited information on the operational condition of

the transponder. Specifically, there were only a few sensors available to provide

information on the response of the transponder system. This information was limited to

the signal power level sensors, indicated in Figure 1.2 as PMI through _'M8, and a few

bit-error-rate (BER) registers. This limited information was not completely adequate for

assessing the condition of the transponder. In short, the sensors in the transponder were

sparse in number, compared to the other components of the transponder system.

Therefore, the isolation of a fault to a specific component based upon sensory

23

This limitation was termed the Sparse Sensorinformation alone was not possible.

Problem.

This problem also placed a high premium on the reliability of sensory

information. Inconsistent or erroneous readings could render the expert system

inoperable. Therefore, a method for resolving conflicts in sensory data was needed.

A second problem was encountered during knowledge acquisition. A prerequisite

for the development of an expert system is an extensive understanding of the application

area. In a diagnostic application, this requirement dictates that the potential fault states

of the system be well known. However, the ACTS transponder was still under

evaluation, and a complete understanding of its fault response had yet to be formulated.

This fact constrained the investigators to work with limited diagnostic knowledge.

Without a clear definition of the transponder's fault response, explicit diagnostic rules

were not possible. Therefore, the expert system was prescribed to work with abstract,

as well as concrete diagnostic knowledge.

The final problem was also a result of the evolutionary state of the transponder

system. The problem was that changes in the design of the system were always possible.

These changes could range from modifications to design specifications, or even the

addition of new modules. This situation made it difficult to develop a robust diagnostic

agenda.

Faced with these problems, the goal of this project changed more towards a study

effort. Emphasis was placed on the development of techniques that would overcome

these problems and permit the expert system to reason intelligently with only limited

information. The system's knowledge needed to be structured such that any change in

the design of the transponder could easily be reflected in the structure of the expert

system. All of these requirements placed a premium on the design of knowledge

representation techniques and reasoning methods that were general and flexible.

24

The result of this effort was the development of a prototype diagnostic expert

system called FIDEX, Fault Isolation and Diagnosis EXpert. This project demonstrated

the feasibility of developing an intelligent computer diagnostic system not only for the

ACTS transponder, but for space systems in general.

1.3 General Approach to Solution

The general approach taken in the development of this project followed the

problem-solving approach used by the ground personnel who perform satellite

diagnostics. This strategy was termed the Modular Approach to Diagnostics. In general,

it follows the four tasks of:

1. Fault Detection: Monitor the response of the transponder to determine whether it is

functioning properly or not

2. Fault Isolation: Narrow the range of suspected components to the smallest possible group

3. Fault Diagnosis: Investigate the precise nature of the misbehavior and determine the

component causing it

4. Fault Response: Respond to the diagnosis in a robust and intelligent manner

Fault Detection

The purpose of the first task, Fault Detection, is to detect any misbehavior in the

transponder performance. This task involves the analysis of current sensor information

to ascribe qualitative descriptions to each sensor's reading; either "GOOD" or "8,40."

These descriptions are based on whether the data reported by a sensor exceeds a

tolerance figure centered on its nominal or expected value. Sensor readings which are

within tolerance receive a "GOOD" description, and those which exceeded their tolerance

25

rangeare labeledas "BAD."The detectionof a fault is baseduponestablishinga "BAD"

readingonanysensor.This indicatesthata misbehaviorexistsin thetranspondersystem

andcausesthe next taskto begin.

Fault Isolation and Sensor Validation

The second task in this approach is Fault Isolation. Its purpose is to isolate the

suspected fault to the smallest possible group of components in the transponder. This is

accomplished through a principle known as Error Propagation. This principle states that

the observable symptoms of a misbehavior in a component propagates through all

subsequent sensors in a signal path. The source of such a misbehavior can thus be

concluded to lie in that signal path, prior to the detection of the misbehavior, and

subsequent to the last sensor indicating a proper signal response.

To implement this, the isolation task considers the qualitative description of all

sensor readings ascribe by the detection phase. It locates a sensor reporting a "COOD"

reading which is followed by a "SAD" reading. However, because of the sparse sensor

limitations, this approach can only isolate the source of the misbehavior to the group of

components between these two sensors. For the purposes of this project, these groups

of components are termed SubSystems, and are defined as the groups of components

bounded signal power level sensors.

The fault isolation task relies heavily upon the integrity of the data reported by

the sensors. Should any sensor report erroneous data, this task will fail to reach a valid

conclusion. Therefore, a subordinate Sensor Validation task was added to this diagnostic

phase.

The sub-task of sensor validation is designed to identify the possibility of a faulty

sensor. This ability permits the FIDE)(system to avoid the search for a non-existing

26

transponderfault. Sensorvalidation is alsobasedon error propagation;however, in a

slightly different fashion. Again, asignalproducinga "BAD"sensorreadingat onepoint

in the transpondershould result in a "BAD"readingon all subsequentsensorsin that

signalpath. This task identifies thepossibility of a faulted sensorif a "GOOD"reading

insteadis found.

In either case,thepurposeof isolationis to identify the subsystemcontainingthe

componentcausingthe misbehavior. If this misbehavioris the result of a component

failure, the subsystemidentified by its input and output sensorreadingsis flaggedas

isolated. However, if thedetected"sAD"sensorreadingis the result of a faulty sensor,

isolation flagsthe sensorycomponentsastheisolatedsubsystem.Oncethe sourceof the

fault is isolated,the next taskis initiated.

Fault Diagnosis

The third task, Fault Diagnosis, involves consulting a community of diagnostic

expert systems. Each system is designed to address the problems of a specific subsystem

within the transponder. Determining the appropriate diagnostic expert to be consulted

is the final task of the isolation phase.

These specialized diagnostic systems use knowledge which is rule-based and

backward chaining in nature. The hypotheses for these rules represent the potential faults

in the isolated subsystem. The order in which they axe placed on the agenda is based on

the history of the fault states. Maintaining this history permits FIDEX to pursue the

most likely problems first.

Each diagnostic system was also designed with an ability to perform inexact

reasoning. This was done to overcome problems which resulted from limited information

27

about the transponder's performance. Such an ability was important in that the FIDEX

system would often need to make a "guess" at the most likely fault state.

The inexact reasoning technique chosen for this project was based on the certainty

theory given by Shortliffe [34]. It relies upon establishing incremental measures of belief

or disbelief in rule conclusions. These two factors are then used to establish an overall

confidence when a conclusion is supported by multiple rules.

Fault Response

The final task is Fault Response. The present strategy for fault response is to

provide recommendations for reconfiguring the components or sensors. Plans are to

include the capability to reconsider fault diagnosis if the recommended action was

ineffective. FIDEX would retain its past diagnosis, including recommendations, and

reconsider the problem with information made available following the corrections to the

transponder.

The remainder of this paper discusses the workings of the FIDEX system. It

demonstrates the techniques discussed above, and by example, show their application to

other types of diagnostic systems.

CHAPTER II

DEVELOPMENT ENVIRONMENT

The long term objective for FIDEX was to permit it to acquire data on the

transponder through the satellite's onboard data acquisition systems. However, during

its development of FIDEX it was decided to acquire this data interactively from the user.

Therefore, a user interface between NEXPERT Object" and ToolBook" was developed.

These software packages operate in the MicroSoft" Windows" environment. This permits

them to interact and communicate through dynamic data exchange (DDE).

Being a Windows" application, the interface is highly menu driven. The user

enters information about the condition of the transponder through various forms and

prompts. This data is then dynamically transferred to the NEXPERT" application where

it is evaluated. The interface also allows NEXPERT" to prompt the user for information

as it is required during the diagnostic process.

The FIDEX system needed to be designed in a fashion that would allow it to

incorporate changes to the transponder easily. Therefore, a frame-based approach was

taken for knowledge representation. The system was also required to operate on an

i80386 machine. The NEXPERT Object" development environment, by Neuron Data,

Inc., wag chosen as the development environment for the FIDEX system.

NEXPERT" permits an object-oriented style of programming within

class/subclass-object/subobject hierarchies. It includes message passing through active

facets. It allows the encoding of general rules that scan frame hierarchies. It also

permits access to database information contained in a variety of database formats. It can

28

29

be linked with and execute external programs. As a MicroSoft" Windows" application,

it supports dynamic data exchange (DDE) and external message passing through dynamic

link libraries (DLLs). All of these features were important in the design of FIDEX.

Table 2.1 shows the basic system requirements for using NEXPERT Object'.

Table 2.1: NEXPERT Object" System Requirements

_. IBM PC Model 80, or compatible i80386 machine, with 1024-KBytes of base

memory plus a minimum of 2048-KBytes extended memory.

• MicroSoft" Windows" version 3.0 or later.

• Enhanced Graphics Array (EGA) or VGA color graphics adaptor with a minimum

of 64-KBytes graphics memory.

• 1.2-MByte or 1.44-MByte floppy disk drive.

• Hard disk with a minimum of 6-MBytes available disk space.

• Programmable bi-directional parallel port.

CHAPTER IN

KNOWLEDGE ENGINEERING

The diagnostic knowledge of FIDEX is represented using both frame-based and

rule-based techniques. This section discusses the structure of this hybrid framework.

This is required to provide a background for discussions in subsequent chapters which

describe the actual implementation of FIDEX in the syntax of NEXPERT Object'.

3.1 Frame-Based Architecture

The expert system needed to be designed such that it would easily allow the

incorporation of changes to the transponder. Therefore, it was decided that a

frame-based approach for knowledge representation would be appropriate. Frame

hierarchies were developed to represent the transponder's components, subsystems,

sensors and fault states. These hierarchies were interconnected into a network to enrich

the overall knowledge representation structure.

3.1.1 Structure of Components Class Hierarchy

A frame hierarchy was created to provide a clear and efficient representation of

all components in the transponder. Figure 3.1 shows this structure called the

Components Class Hierarchy. This figure illustrates a convention that is maintained

throughout in this report. Circles represent class frames and triangles represent object

30

31

frames. Lines indicatelinks betweenframes,with thearrows indicatingthe direction of

inheritance.

Figure 3.1: Components Class Hierarchy

The root

Components. This class was

components in the transponder.

second level of class frames.

node in Figure 3.1 is a circle indicating a class frame called

created to represent the commonality between all

It is divided into several subclasses; represented by the

Each of these subclasses describe the function of

components in the transponder: amplifiers, attenuators, etc. The components are

represented by object frames attached to these subclasses.

3.1.2 Structure of Subsystems Class Hierarchy

Each component is also associated with a subsystem of the transponder, see

Figure 3.2. Several object frames are used to represent the collections of components

called subsystems. These frames are then attached to a class frame called Subsystems.

32

Finally, the membership of a component to a particular subsystem is represented by

attaching its object frame as a subobject of the appropriate subsystem object frame.

Ftgure 3.2: Subsystems Class Hierarchy

3.1.3 Structure of Sensors Class Hierarchy

Two types of sensory elements monitor both the response of the transponder and

the relayed signal. The first type is signal power level sensors. The other type

represents the data stream bit error rate (BER) registers located within the ground

terminal systems. The information used for diagnosis is provided by these sensors.

These sensors were represented by creating the class structure called Sensors for all

sensory components shown in Figure 3.3.

This structure is divided into subclasses according to the two types of sensors.

Each sensor is then represented by an object attached to the appropriate type subclass.

33

Power BER Power BER
AIDLffiOT S MoteTs Re_ste[s Sensors Sensors

Subclass Subdass Subdtss Subd,ss Subdass

BER Ch.2 BER
Sensors Sensors

Subclass Subclass

Figure 3.3: Sensors Class Hierarchy

The BER Sensors class is also divided into two subclasses according to their

channel. This was done to simplify the analysis of frequency dependant fault states. It

also demonstrates how class structures can be cascaded to further describe component

function and organization.

Like all other transponder components, sensory elements could potentially fail.

Therefore, each sensor is also represented in FIDEX as a member of the Components

world. Each sensory component is represented by an object frame. These frames are

linked to their appropriate subclass type in both the components world and the sensors

world.

3.1.4 Structure of Fault States Class Hierarchy

34

The transponder fault states are represented as objects in a class structure called

Fault States. This class is also divided into several subclasses. Each subclass frame

represents the association of fault states to component types such as amplifier faults,

attenuator faults, etc. Object frames representing the specific failure modes of the

transponder are then attached to the appropriate subclasses. This structure, shown in

Figure 3.4, enables FIDEX to reason about both known and abstract faults.

Figure 3.4: Fault States Class Hierarchy

This section has discussed the engineering of knowledge about the structure of the

transponder and its faut states. The next sections discusses the engineering of knowledge

about the diagnosis of fault states within the transponder.

3.2 Modular Approach to Diagnostics

35

The basic approach was to divide the job of diagnosing faults within the

transponder into a series of diagnostic tasks. Each of these tasks was separated into an

individual module of the FIDEX system.

The knowledge for the task of monitoring the response of the transponder in order

to determine whether it is functioning properly or not was separated into an individual

module called the Fault Detection Module. Similarly, the knowledge for the task of

narrowing the range of suspected components to the smallest possible group was

separated into an individual module called the Fault Isolation and Sensor Validation

Module.

The fault isolation task isolates the probable source of the fault to a subsystem of

the transponder. For each of these subsystems, different knowledge is required to

investigate the precise nature of a misbehavior and for determining the component

causing it. Therefore, this knowledge was separated into a different Fault Diagnosis

Module for each subsystem of the transponder system. Similarly, the strategies for

responding to the diagnosis were also different for each subsystem. Therefore, the fault

response task was incorporated into the diagnostic modules for the subsystems.

Each of the above modules are loaded as they are needed in the diagnostic

process. In this manner, the FIDEX system functions as a community of experts on the

diagnosis of faults in the transponder system.

3.3 Reasoning Techniques

FIDEX reasons with two distinctly different techniques. The first technique,

called absolute reasoning, is used to establish or reject the existence of predefined fault

36

states. The second technique, called abstract reasoning, is used to recover when the

diagnostic task cannot reason effectively using the first technique. FIDEX uses the

second technique to establish evidence in conceptual fault states.

3.3.1 Absolute Reasoning

In general, procedural knowledge which supports rules in absolute terms is

associative knowledge. This type of knowledge associates conditions with the

establishment or rejection of a conclusion. Two types of associative knowledge are used

by FIDEX.

The first type is directly associative. This knowledge directly associates

conditions with conclusions. An example of this type of knowledge might be: If the

data reported by a sensor reading exceeds its tolerance band, then the sensor's reading

is "SAD." The condition of sensor data exceeding its acceptable range is directly

associated with establishing a "sAD" qualitative description for that reading. Rules which

represent this type of knowledge are used to structure the strategies of the diagnostic

tasks.

However, the majority of the knowledge used in the task of fault diagnosis is

supported by an accumulation of evidence. This type of knowledge is cumulatively

associative. That is, the accumulation of several conditions is associated with the

establishment or rejection of a conclusion. Moreover, each condition may contribute

differently to that conclusion. An example of such knowledge might be: ",4 LOW signal

power level might indicate internal phase lock failure in a local oscillator." and ",4 HtCn

bit error rate is might indicate that the local oscillator is out of phase lock."

Neither conditions can be directly associated to establish or reject the conclusion

of an internal phase lock failure. However, each contributes evidence to that conclusion.

37

When multiple rules contribute evidence toward a conclusion, the system must be able

to accumulate this evidence. The FIDEX system has such an ability.

3.3.2 Inexact Reasoning

The FIDEX system uses inexact reasoning based on the MYCIN technique for

incrementally accumulating evidence during the fault diagnosis task. This is because

very few of the known fault states of the transponder system are supported by singular

conditions. This section discusses the approach used in FIDEX for implementing the

MYCIN technique.

Not shown in Figure 3.4 is an additional node to the fault state hierarchy. The

Fault States class is attached as a child of another class called Certainty Analysis. The

certainty analysis class was created to provide the overhead required to perform inexact

reasoning. All objects which represent hypotheses requiring certainty analysis are

attached to this class. Because the fault state hypotheses require this, attaching their root

node to the Certainty Analysis class provides them this overhead.

Each fault state object inherits from the Certainty Analysis properties for

accumulating: measures of belief, measures of disbelief, accumulated belief MB, MD, ,_,

XO, and CF quantities that were discussed in section 3.3.2. As the diagnostic process

acquires evidence in support or rejection of Fault State hypotheses, measures of belief

and disbelief are assigned to these properties.

Associated with these properties are algorithms for calculating the confidence

factor according to the equations in 3.1 and 3.2. When measures of belief or disbelief

are assigned, they are accumulated and an overall certainty is calculated.

3.3.3 Incremental Accumulation of Evidence

38

FIDEX uses the incremental accumulation of evidence technique to establish or

reject hypotheses which are supported by multiple rules, Shortliffe [34]. The two

equations given in 3.1 accumulate a measure of belief _ and disbelief aD in a hypothesis

H. These two measures axe then used by Equation 3.2 to establish an overall confidence

CF in that hypothesis.

AB(I-I) k - AB(H)k_ t + MB(H)t.[1 - AB(I-I)t_ l]

AD(tOk - AD(H)t_ t + MD(H)k'[1 - AD(I-I)t_ l]

(3.1)

.4B(H)k - AD(H)k
CF(H)_- [] (3.2)

I - min(AB(H)k,AD(H)k)

Rules which accumulate belief do not assign Boolean values to their associated

hypothesis. Instead, they determine a measure of belief MB or measure of disbelief MD

in that conclusion. These measures represent the degree to which the rule has

contributed to the establishment or rejection of its hypothesis. The values which are

assigned to these measures range between 0 and I. Values close to I represent strong

measures while values close to 0 represent weak measures. A value of I is generally not

assigned; as it results in a Boolean value for aB or/.D.

Consider an arbitrary hypothesis H and assume that no evidence has been

established toward belief in that conclusion; K = 0 and AB(H)o = 0. Establishing a fact

in support of this conclusion might assign a measure of 0.2 to the belief in H, for

39

exampleMB(H), = 0.2. According to the first equation in 3.1, the accumulated belief in

the hypothesis would then be AB(H), = 0.2. The establishment of another fact in support

of H might assign a measure of 0.5 to the belief in H, i.e. MB(H)2 = 0.5. The

accumulated belief in the hypothesis would then be incremented according to the first

equations in 3.1; ,o(n)_ = 0.6.

The accumulated measure of disbelief,,tD(n) is incremented similarly. However,

this accumulation would be based on rules which establish measures of disbelief in a

hypothesis MD(H)k. This measure indicates evidence in rejection of the hypothesis.

As rules ascribe MB(H)k'S and MD(H)k'S , and accumulated values are calculated, the

overall confidence in a conclusion CFa-I_, is calculated. Confidence factors range in value

from -1 to 1. A value near -1 signifies little confidence in the hypothesis, or the

rejection of the hypothesis. A value near 1 denotes a high level of confidence, or the

establishment of the hypothesis. Values in between represent various degrees of

confidence, with 0 meaning unknown.

3.3.4 Abstract Reasoning

Discussion to this point has been on the incremental accumulation of evidence

toward concrete fault states. The next topic is discuss the application of these techniques

for abstract reasoning. In general, knowledge which supports rules in abstract terms is

conceptual knowledge. This type of knowledge is indirectly associative knowledge. It

associates conditions to abstract ideas which are indirectly related to the rule being

pursued. An example of this type of knowledge might be: A HIGH bit error rate is

typical of a misbehavior in one of the frequency conversion components.

40

FIDEX uses this type of reasoning to establish levels of confidence in class level

fault categories. That is, it might reach a conclusion of the form: The observed

symptoms are typical of those associated with a failure of the local oscillator.

During the diagnostic task, FIDEX exhausts its knowledge about the fault states

of the system. It is entirely possible that a failure mode might occur for which FIDEX

has no knowledge. In that case, it would resort to confidence accumulated in class level

fault states as its diagnostic conclusion.

This abstract reasoning ability of FIDEX is implemented as follows. All of the

fault state type subclasses defined in section 3.1.4 are attached as subclasses of the class

Certainty Analysis. Therefore, they inherit information from this class, and permit

measures of belief and disbelief to be assigned to the fault state classes. Levels of

confidence can then be accumulated at this class, or conceptual, level. Using this

technique, FIDEX can piece together information and reach conceptual conclusions about

a fault.

3.4 Learning and Adaptive Search Strategy

There are two databases used by FIDEX. One contains information required to

initialize parametric values of the system. Each record contains information on nominal

readings, error tolerances, and other initial parameters. These values are loaded and

stored in the appropriate slots of objects at run time or when FIDEX is initialized. This

method of initialization was chosen to facilitate the maintenance of the system.

The second database is used to provide FIDEX a limited learning capability.

FIDEX stores the failure history of the transponder system in this database. Each known

fault state is represented by a record that contains fields that represent the failure history

of that fault state. Following diagnostics, FIDEX increments the history of the identified

41

fault. This record keeping is used to direct the search strategy of future sessions toward

the most likely faults.

The search strategy is adaptive in that the priorities by which known fault states

are placed on the agenda is based upon the values maintained in the history database.

A class level property of all fault states is the integer INFR_CATEGORY. The value of this

property is retrieved from the database when the diagnostic task is initialized. This

property is then assigned to the inference priority of the fault state hypothesis by slot

actions. When the diagnostic task establishes a known fault state, the value of its

inference category is incremented accordingly. The updated value is then stored in the

learning database.

This chapter has discussed the engineering of knowledge about the structure of

the transponder system and diagnosing its fault states. The next several chapters discuss

the techniques used to represent this knowledge in the knowledgebases of the FIDEX

system.

CHAFFER IV

KNOWLEDGE REPRESENTATION

As the previous chapter discussed the engineering of knowledge, this chapter

discusses its frame-based representation in the FIDEX system. The kernel of this frame

representation of the structure of the transponder is contained in the FIDEX.tkb

knowledge base. A complete listing of that knowledge base is included in Appendix A

of this report. The sections of this chapter discuss key segments of that knowledge base.

4.1 Representation of Transponder System Components

As discussed in chapter 3, a frame hierarchy was created to provide a clear and

efficient representation of all components in the transponder. The root of this structure

is a class frame called COMPONENTS. This class was created to represent the commonality

between all components in the transponder. It is divided into several subclasses;

represented by the second level of class frames, as shown in Figure 3.1. The

components are represented by object frames attached to these subclasses.

4.1.1 Property Definitions

Code Segment 4.1 shows a series of declarations that define the properties which

are used to describe the components of the transponder system. These properties were

defined to describe physical characteristics about a component; such as its name,

42

43

input/outputcomponents,etc. Somepropertiesareusedby FIDEX to give a component

a selfawareness.Otherpropertiesprovidefunctionalinformationaboutthecomponents;

suchasits inputandoutputsignalpowerlevels, gain, nominalgain,etc. Theproperties

representattributesof transpondercomponentsasfollows.

COMPONENT_IN and COMPONENT OUT are string properties that are used to encode

structural information about the transponder components. These property values are

initialized for every component to the names of the component objects at their input and

output respectively. It is shown in the next chapter how these properties can be used to

by an object to obtain information from its neighbors.

Code Segment 4.1: Properties of the COMPONENTS Class

(@PROPERTY= COMPONENT_IN @TYPE =Soiag;)

(@PROPERTY= COMPONENT_OUT @TYPE=String;)

(@PROPERTY= DESCRII'TION @TYPE=String;)
(@PROPERTY= FREQUENCY @TYPE= Fl_t;)

(@PROPERTY= FREQUt_CY_IN @TYPE= Flint;)

(@PROPERTY= FREQUI_CY OUT @TYPE=Float;)

(@PROPERTY = GAIN @TYPE = Float;)

(@PROPERTY = MODEL_GAIN @TYPE = Float;)
(@PROPERTY= MODEL POWER IN @TYPE=Float;)

(@PROPERTY= MODEL POWER OUT @TYPE=Float;)

(@PROPERTY= NAME @TYPE= Strlng;)

(@PROPERTY ffi NASA ID @TYPE= StBng;)

(_PROPERTY ffi NOMINAL FREQUENCY @TYPE _Float0

(@PROPERTY = NOMINAL_FREQUENCY IN _TYPE = Float;)

(@PROPERTY = NOMINAL FREQUI_CY OUT OTYPE = Fl_t;)

(@PROPERTY = NOMINALGAIN @TYPE = Float;)

(@PROPERTY = NOMINALPOWER_IN @TYPE = Float;)

(@PROPERTY= NOMINALPOWER_OUT @TYPE=Float;)

(@PROPERTY= POWER IN @TYPE= Fl_t;)

(@PROPERTY= POWER OUT OTYPE= Float;)

Another sting property called NAME is used to encode the name of a component

object. This allows the object to communicate information about itself through the frame

hierarchy. It is also useful for writing generic rules. Such rules operate on information

posted in several blackboard frames. This property enables an object to post itself on

44

theblackboardandbe operateduponby suchrules. This utility is discussedin thenext

chapter.

NASA 1l) and DESCRIPTION are string properties which are used to communicate

information about a component object through the ToolBook" interface. NASA_tO is

initialized to the tag which NASA personnel use to reference transponder system

components. DESCPdPTtON is initialized to a functional description of the component.

The remaining properties are used to represent functional attributes of the

transponder system components. Floating point properties are used to represent the

propagation of the communication signal through a component of the transponder.

Particularly, there are two aspects of the signal that are of interest: the signal power level

and carrier frequency. The properties POWER_IN and FREQUENCY_IN are used tO represent

these attributes of the transponder signal at the input to a component. Similarly, the

properties coWER_ouT and FREQUENCY_OUT are used to represent the signal power level

and carrier frequency at the output of a component. The effect that a component has on

the signal propagated through it is represented by the floating point properties GAIN and

FREQUENCY. A component's gain is its effect on the power level of the signal passed

through it; be that an amplification or attenuation. If a component alters the carrier

frequency of the signal, that alteration is represented in the value of the FREQUENCY

property; be it an upeonversion or downconversion.

All components have parametric values for their input/output signal power levels

and frequencies. Moreover, their effect on the signal is defined by their design

specifications. These nominal values are represented by the properties:

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN,

NOMtNAL_POWER_IN, and NOMtNAL_POWER_OUT.

Early in the development of the FIDEX system, a direction was taken toward the

development of a system that used model-based reasoning. Although this approach was

45

abandoned early on, the properties required for its implementation were left within the

COMPONENTS world. The reason for this was that it made no sense to destroy this

capacity. If NASA would wish to expand this capability, the basic building blocks will

exist within the FIDEX frame structure. Specifically, these properties are MODEL_GAIN,

MODEL_POWER_IN, and MODELPOWER_OUT.

4.1.2 Class Definitions

The next definition, Code Segment 4.2, creates a class frame called COMPONENTS

in the object space of the expert system. It establishes links to several subclasses and

defines the properties discussed above as being associated with this class. The ten

component subclasses listed represent different types of components in the transponder

system.

Several properties are required to represent attributes of specific types of

components. These properties do not apply to components in general, but to specific

types of transponder components. Code Segment 4.3 lists their definition. Due to the

number of properties involved and their distribution between various subclasses, they are

discussed with their corresponding subclasses later.

46

Code Segment 4.2: Definition of the COMPONENTS Class

(@CLASS= COMPONENTS

(@SUBCLASSES=
AMPLIFIERS

ATTENUATORS

LOCAL OSCILLATORS
RECEIVERS

POWER_M£TERS

BER REGISTERS
SWITCHES

GaAsFETS

TWTAS

I_flXERS)

(@PROPERTIES =

COMPONENT_IN

COMPONENT_OUT
DESCRIFFION

FREQUENCY
FREQUENCY_IN

FRr_Qtn_cvouT
GAIN

MODEL GAIN

MODEL POWER IN

MODEL eowr__ouT
NAME

NASA_ID

NOMINAL _UE{'_IC'Y

NOMINALFREQUENCYIN

NOMINAL_FREQUENCY OUT

NOMINALGAIN

NOM_^L_VOwr___
NOMINAL_POWER_OUT

POWER IN

POWER_OUT)

47

Code Segment 4.3: Propertiesof COMPONENTS SubClasses

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY --

(@PROPERTY--

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@PROPERTY =

(@ PRO PERTY =

(@PROPERTY =

(@PROPERTY =

BIAS_CURRENT
BIAS VOLTAGE

coM_om_r_n%2
COMPONF.NT OUT 2

CONFIG

DRAIN_VOLTAGE

FREQUF_CY_2

_EQtm_cY_n__2
FREQUENCY OUT_2

GA_'_ 2

GATE- VOLTAGE

LO_INPUT EREQUF_CY

LO_INPUT POWER

LO_UNIT

MODEL GAIN_2

MODEL POWER_IN_2

MODEL_POWER OUT 2

MODF.L sETrINO

NOMINAL_BIAS_CI_

NOMINAL_BIASVOLTAGE

NOMINAL_DRAIN_VOLTAGE

NONIINAL_FREQUENCY_2

NOMINALFREQUENCY IN 2

@TYPE = Float;)

@TYPE = Float;)

@TyPE=String;)

@TyPE=String;)

@TYPE = String ;)

@TYPE = Float;)

@TYPE = Float;)

@TYPE= Float;)

@TYPE= Float;)

@TYPE=Float;)

@TYPE= Float;)

@TYPE = Float;)

@TYPE= Flint0

@TyPE=Strlng;)

@TYPE = Float;)

@TYPE = Float;)

@TYPE = Float;)

@TYPE = Float;)

@TYPE = Float;)

@TYPE=Float;)

@TYPE=Float;)

@TYPE=Float;)

@TYPE = Float;)

NOMINALFREQUENCY_OUT 3 @TYPE = Float;)

NOMINAL=GAIN=2 @TYPE = Float;)

NOMXNAL_GATE VOLTAGE @TYPE--Float;)

NOMINAL LO INPUT_FREQUF_CY @TYPE=Float;)

NOMINAL LO_INPUT POWER @TYPE= Float;)

NOMINAL_POWER_IN_2 @TYPE = Float;)

NOMINAL POWER OUT_2 @TypE=Float;)

NOMINALSETTING @TYPE= Float;)

POWER_IN_2 @TYPE=Float;)

POWER_OUT_2 @TYPE= Float;)
SE'VrING @TYPE= Float;)

SETTING_ERROR @TYPE=Float;)

48

Each subclass defined in Code Segments 4.4a and 4.4b represent the subclass

nodes introduced in Figure 3.1 in section 3.1.1. Again one class is created for each

basic type of category of component in the transponder system. The names are

descriptive but are explained for clarity.

Code Segment 4.4a: Definition of the COMPONENTS SubClasses

(_CLA SS -- AMPLIFIERS

(@PROPERTIF_ =

BIAS CXJRRF_IT

BIAS.VOLTAGE
DRAIN VOLTAGE

GATE)OLTAOE

NOMmAL_BIAS_CURREJCr
NOMINALBIAS_VOLTACE
r_OMINAL_DRAIN_VOLTAGE
NOMINAL_GATE VOLTAGE

0_CLASS = ATTENUATORS

(@PROPERTIES =

MODEL_SETTING
NOMINAL SE'I'riNG

SETTING

SE'VrING_ERROR

(_..ASS = BER_REGISTERS

(_:'It.ASS = G_sFETS

(@PROPERTIES =

DRAINVOLTAGE

GATEVOLTAGE

))

)

NOMINALDRAINVOLTAGE

NOMINAL_GATEVOLTAGE)

(_CLASS = LOCAL_OSCILLATORS

(@PROPERTIES=

COMPON_rr OUT_2
FREQUENCY_OUT2
NOMINALFREQUENCY_otrr 2
NOMINAL POWER_OUT 2

POWER_OUT_2))

))

The subclass called AMPLIFIERS is used to classify objects that represent

components that amplify the power level of the signal inside the transponder system.

Associated with this class are 8 floating point properties. The first two properties listed

in definition of AMPLIFIERS in Code Segment 4.4a are BbtS..CUmUrNT and BIAS_VOLTAGE.

49

These properties represent the bias current and bias voltage supplied to an amplifier

component by its power supply. The second two properties, DRAIN_VOLTAGE and

GATE_VOLTAGE are used to represent the voltage levels on an amplifier component's drain

and gate respectively. The design parameters specify nominal values for these four

quantities. The remaining properties, prefixed by NOMINAL_ are used to represent the

respective parametric values.

The subclass called ,4T_NUaTORS is used to classify objects that represent

components that attenuate the power level of the signal inside the transponder system.

Again, several properties are unique to these objects. Attenuator objects have only one

unique attribute. This is that they have a SETTING. The levels of attenuation for these

components are set either manually or by the Network Control Computer (NCC). This

value is stored in the floating point property called SETI'ING. The parametric value for

an attenuator's setting is represented by the NOMINAL_SE1TING property. The difference

between an attenuator's nominal setting and its actual setting is represented by the

property called SETTING_ERROR. And finally, a remanent of the model-based overhead

is provided for an attenuators MODEL_SETTING.

The third definition in Code Segment 4.4a creates a class called BER_REGISTERS.

This class is used to represent the Bit Error Rate Register objects as components of the

transponder system. The roles of sensors as both sensor elements and transponder

system components were discussed in section 3.1.3 of chapter 3.

The fourth class definition creates a class for the GaAs FET Amplifier. This

shares four properties with the AMPLIFIERS class. However, the GaAsFETS class is

separated from the amplifiers because the bias current and bias voltage properties have

no meaning for Gallium Arsenide Field Effect Transistor (GaAs FET) amplifiers. The

properties DRAIN_ and GATE_VOLTAGE and their associated NOMINAL_ values for the GaAs

FETs are the same as for the amplifiers.

50

The final class definition in Code Segment 4.4a creates a classification for the

objects that represent local oscillators (LO). The LOCat._OSCtt.t_TORS class has five

unique properties. However, all of these as extensions of concepts which have already

been discussed. That is, the local oscillators in the ACTS transponder system are

multiple output devices. Each unit has one output per channel through the transponder.

In the current phase of development, only two channels are operating. This requires that

an additional output port be represented in the properties of the objects that represent

Los. Therefore, the properties that represent the functional and relational attributes of

a component's output port were duplicated and suffixed by _2.

Code Segment 4.4b continues the definition of the classes which organize the

COMPONENTS world hierarchy. The first definition creates a class for the objects that

represent the two multiplexers, or signal mixers. These units have an additional input

for a signal from a local oscillator. Therefore, the properties for component input

parameters were duplicated and prefixed with LO_ to represent this additional signal. The

property LO_UNIT corresponds to the COMPONENT_IN property discussed earlier, except

that this property represents the name of the local oscillator associated with the LO input

port.

The second definition in Code Segment 4.4b creates a class called _'Wg_METERS.

This class is used to represent the power meter objects as components of the transponder

system.

The third definition creates a class called RECEiVeRS for the objects that represent

the two receiver components in the transponder. As for the MIXERS, these components

also have a LO input port. Therefore, this class has the same properties as the mixers

class and the corresponding properties represent the same quantities.

51

Code Segment 4.4b: Definition of the COMPONENTS SubClasses

(@CLASS= MIXERS

(@PROPERTF_ =

LO_INPUT_FREQUENCY

nO_INPUT_POWER
LO UNIT

NOMINA L LO_INPUT_FREQ_CY

NOI_AL LO_INPUT POWER)

(@CI_SS = POWERMETERS)

(@CLASS = RECEIVERS

(OPROPERTIES =

LO_INPUT_FREQUENCY
LO_INPUT POWER

LO UNIT

NOMINAL_LO INPUT_FREQUENCY

NOMINA L_LO_iNPUT_POWER)

(@CLASS = SWITCHES

(@PROPERTIES =

co_o_r_iN_2
CO_O_NTOUT_2
FREQU_C_ 2
FREQUENCY IN 2

FREQUENCY_OUT_2
GAIN 2

MODEL_GAIN_2
MODEL POWER IN 2

MODEL_POWER OUT_2

NOMINAL_FREQUENCY 2

NOMINAL FREQUENCY_IN 2

NOMINA L FREQUENCY_OUT_2

NOI_ALGAIN_2

NOMINAL POWER IN 2

NON_NAL_POV_R_OUT_2

POWER_IN_2

POWER OUT 2))

(@CLASS= TWTAS)

The fourth class definition in Code Segment 4.4b creates a class for the matrix

switch. This component is a multiple input/output device having one input and one

output per channel in the transponder system. Since there are two channels, one

additional input and one additional output port needed to be represented in the properties

of the SWrrCHES class. Again, these are simply extensions of concepts discussed for the

general case of COMeONENTS, and they are suffixed by _2.

52

The final class definition for the subclasses of the COMeONF.NTS world is 7w'r,4s.

This class is for the Traveling Wave Tube Amplifier (TWTA). There are no unique

properties associated with this component.

4.1.3 Object Definitions

The next step is to create objects to represent the various components of the

transponder system and link them to their respective component type subclasses. These

definitions are given in Code Segments 4.5a and 4.5b. Each object corresponds to one

of the transponder system components that were introduced in section 1.1.2 of chapter

1. They are listed in Table 1.1.

The first definition in Code Segment 4.5a creates an object to represent the

Gallium-Arsenide Field Effect Transistor (GaAs FET) amplifier. This unit is located at

the output of the channel 1 signal path, see Figure 1.2. This object, called G,4aSFET, is

linked as a child of the GaAsFETS class. Therefore, it inherits all the associated properties

that were discussed in the previous section.

The next two definitions create objects to represent the High Power Amplifier

Input Power Control (HPAPC) amplifiers labeled as E and F in Figure 1.2. HPaPC_AMeJ

represents the power control amplifier in the channel 1 output signal path and

HPAPC_AMP_2 represents its counterpart in channel 2. Since both these objects represent

amplifiers in the transponder, they are both attached to the AMPLIFIERS subclass of the

COMPONENTS hierarchy.

The remaining HPAPC components are the attenuators labeled as K, L, M, and N

in Figure 1.2. These components are represented by the objects created as HPaPC_aTTNJ

through neaec_arrN_4. The fourth through seventh definitions in Code Segment 4.5a

create these objects and attach them to the ATIF.NtJarORS class.

Code Segment 4.5a: Objects of the COMPONENTS Class

(@OBJECT= GAASFET

(@CLASSES= GaAsFETS

(@OBJECr = HPAPC_AMP I

(q_"LASSES = AMPLIFIERS

(@OBJECT = m'^I_:LAMP 2
(_CLASSES = AMPLIFIERS

(_OBJF_.CT= I-IPAPC_ATTN_I

(_r'LASSES = A_ATORS

(_OBJECT = HPAPC_ATTN_2
(@CLASSES = ATTENUATORS

(@OBJECT = HPAPC_ATTH_3

(_CLASSE,S-- ATTENUATORS

(@oBjEc'r= m,^PC_^'rn_4

(@CLASSES = ATTE_nJATO_

(@OmECT = n'PC AMP_I
(@CLASSES = AMPLIFIERS

(_3BJECT = IFPC_AMP_2

(@CLASSES = AMPLIFIERS

(@OBJECT= IFPC AMP 3
(@CLASSES= AMPLIFIERS

(_OBJECT = IFPC AMP_4

(@CLASSES = AMPLIFIERS

(@OBJECT= IFPC_A'rrH_I
(@CLASSES = A'V'fENUATORS

(@OBJECT= IFPC_ATTN 2
(_LASSES = ATTENUATORS

(@OBJECT = n_c ATTN_3

(@CLASSES = ATTE]_qJATORS

(@OBJECT= IFPC_ATrN 4
(@CLASSES = ATTENUATORS

))

))

))

))

))

))

))

))

))

))

))

))

))

))

))

53

The remaining definitions in Code Segment 4.5a create objects to represent the

Intermediate Frequency Power Control (IFPC) components within the transponder

system. These were indicated in Figure 1.2 by labels ,4 through z The first four,

1FPC,4MPI through 4, represent the IFPC amplifiers. They are therefore linked as

children of the ,_PLIFIERS subclass. The remaining four, IFPCaTTNJ through _4,

represent the IFPC attenuators.

ATTENUATORS subclass.

54

They are therefore linked as children of the

Code Segment 4.5b continues the definition of objects that represent the

components of the transponder system. The first two definitions create a new property

called CONFla and an object called MSWITCH that represents the matrix switch component.

It is attached as a child of the SWrrCHES subclass in the COMPONENTS world hierarchy.

This object has a unique property called CONFIG that is used to represent the multiple

channel handling of the matrix switch. The specifics of this property are discussed in

the next chapter.

Code Segment 4.5b: Objects of the COMPONENTS Class

(@PROPERTY= CONF10 @TYPE=String;)

(@OBJECT= MSWITCH

(I_3"LASSES = SWITCH_)

(@PROPERTIES-- COHFIG))

(@CLASSES= _,flXERS))

(@OBJECT= MULT 2

(@CLASSES= MIXERs))

(@OBJECT= RCVR_I
(@CLASSES= RECEIVERS))

(@OBJECT= RCVR..2
(@CLASSF_ = RECEIVERS))

(@OBJECT= RCVR_LO
(@CLASSES= LOCAL_OSCILLATORS))

(@O_ECT= TWTA
(@CLASSES= TWT^S))

(@OBJECT = UPX_LO
(_C'LASSES-- LOCAL_OSCILLATORS))

The next two definitions create objects, MULT_I and MULT_2, to represent the up-

converter multiplexers. These components were indicated in Figure 1.2 and Table 1.1

as CHIMIX and CH2MrA.

COMeONENT"Shierarchy.

previous sections.

55

Both these objects are attached to the MIXERS subclass of the

They therefore inherit all properties that were discussed in the

The definitions in Code Segment 4.5b continue with the definition of two objects

to represent the receiver units at the inputs to the transponder system. The object named

gcvR_l represents the Channel 1 Receiver Unit that was labeled as CH1RCVR in Figure 1.2

and Table 1.1. The object named RCvR_2 represents the Channel 2 Receiver Unit that

was labeled as CH2RCVR. Both these objects are attached as children of the RECEIVERS

class discussed in the previous section.

Objects that represent the local oscillator units in the transponder are created and

attached to the LOCAt. OSCgZaTORS class. The object called RCVR_LO represents the

Receiver Unit Local Oscillator that drives the receiver units. The object called UPX_LO

represents the Up-converter Mixer Local Oscillator that drives the up-converter mixers.

Finally, the Traveling Wave Tube Amplifier (TWTA) is represented by the

creation of an object called rW'/'A attached to the Twras subclass. This completes the

definition of the Class/SubClass/Object hierarchy that was introduced in section 3.1.1 of

chapter 3. The next section of this chapter discusses the representation of the Subsystems

Class that was introduced in section 3.1.2 of chapter 3.

4.2 Representation of Transponder SubSystems

It was shown in Figure 3.2 how each component of the transponder is associated

with a subsystem of the transponder. Several object frames are used to represent the

collections of components called subsystems. These frames are then organized by

attaching them to a class frame for all subsystems in the transponder. Finally, the

membership of a component to a particular subsystem is represented by attaching its

object frame as a subobject of the appropriate subsystem object frame.

code segments define this hierarchy.

56

The following

4.2.1 Property Definitions

Code Segment 4.6 shows a series of declarations that define the properties which

are to be used to describe the subsystems of the transponder system. The first property

is called DIAGNOSTIC MODULE. Recall from section 1.3 of the introduction that the idea

of a transponder subsystem was developed for the isolation of a fault. Once a fault is

isolated to a subsystem of the transponder, the next step is to load a diagnostic module

to perform the task of fault diagnosis on that subsystem. This Boolean property is

initialized to load the diagnostic knowledge base that corresponds to a particular

subsystem. The details of this are discussed in the following chapter.

Code Segment 4.6: Properties of the SUBSYSTEMS Class

(@PROPERTY= DIAGNOSTIC MODULE @TYPE= Bookaa;)

(@PROPERTY= ISOLATED OTYPE = Booleaa;)

(_PROPERTY = LEVEL_IN @TyPE-String;)

(@PROPERTY-- LEVEL_OUT @TYPE= Striag;)

(_PROPERTY = READING_IN @TYPE = string;)

(@PROPERTY= READING OUT @TYPE = Suiag;)

(@PROPERTY= SENSOR IN @TYPE=String;)

(@PROPERTY= SENSOR OUT @TYPE=String;)

(@PROPERTY -- SUBSYS_M_IN @TYPE= String;)

(@PROPERTY = SUBSYSTEM_OUT @TYPE=String;)

The Boolean property called tSOLaTED is used to flag a subsystem as being the

probable source of a detected fault. The rule knowledge used in isolating a fault is

discussed in chapter 7. The actions of these rules set this flag to indicate a subsystem

has been isolated.

57

Thenext four definitionsin CodeSegment4.6are for stringpropertiesto describe

the signalpower levels at the input andoutput of a subsystem. The REaDING_tN and

REaOXN_OtrT properties are set to the qualitative descriptions, "GOOD" or "BAD," ascribed

io sensor readings during the fault detection. The LEVF.t.JN and LEVEL OtrT properties are

set to the qualitative descriptions, "HICH," "LOW', "ZERO," or "OK," that are also ascribed

to signal power levels during fault detection.

The remaining definitions create properties to describe structural information

about the subsystems of the transponder. The string properties SF.NSORJN and

SENSOR otrr are initialized to the name of the sensor object at a subsystem's input and
m

output respectively. Similarly, the string properties SVBSYSTEMJN and SUBSYSTEM_Otrr

are initialized to the name of the subsystem object at a subsystem's input and output

respectively.

4.2.2 Class Definition

The next definition, Code Segment 4.7, creates a class frame called SUBSYSTEMS

in the object space of the expert system. The properties discussed in the previous section

are assigned to this class and are inherited by all attached object frames.

Code Segment 4.7: Definition of the SUBSYSTEMS Class

(@CLASS = SUBSYSTEMS

(@PROPERTIES =

DIAGNOSTIC_MODULE

ISOLATED

LEVEL_IN

LEVEL_OUT
NAME

READING IN

READING OUT

SENSOR_IN

SENSOR_OUT

SUBSYSTEM_IN
SUBSYSTEM OUT)

58

4.2.3 Object Definitions

There are seven subsystems in the transponder system. Each is represented by

an object attached as a child of the SUSSrSTEMS class. Code Segment 4.8 lists the

definition for six of these.

First, an object is created to represent the Channel 1 Amplifier Subsystem. Its

object name is CHIAMP. The GaAs FET amplifier is the only transponder component in

this subsystem. The object that represents this component, GAaSFET, is attached as a

subobject of the CHJaMP object.

Second, the Channel 1 Receiver Subsystem is represented by creating an object

called CHIRCVR and attaching it to the SUBSYSTEMS class. There are four components in

this subsystem. The objects which represent these components, IFPC_AMP_I, IFeC_aTrNJ,

RCVRJ, and RCVRLO, axe attached as subobjects of the CH_RCW subsystem.

The object that represents the Channel 1 Up-converter Subsystem is defined in

Code Segment 4.8 as CHItYt'X. Its subobjects are the HeaPC_aMPJ, HPaPC_aTTNJ,

HPAPC_ATrN 2, MULL1, and UPX_LO.

Code Segment 4.8: Objects of the SUBSYSTEMS Class

(_OBJECT= CHIAMP

(@CLASSES = SUBSYSTEMS)

(@SUBOBIECTS = GAASFET))

(_3OBJECT = CHI RCVR

(@CLASSES= SUBSYSTEMS)

(@StmOBJECTS= mPC^MPI
w__A'r'm_l
RCVRI

RCVR_LO))

(@OBJECT= CHIUPX

<@CLASSES=
(@SUBOBJECTS =

(@O_ECT = CH2AMP

(@CLASSES =

(@SUBOmECTS =

(_OBJECT= CH2RCVR

(@CLASSES =

(@SUBOBJECTS =

(@OBJECT= CH2UPX

(@CLASSES--

(@s UBO BIEcrs =

SUBSYSTEMS

HPAPC AMP 1
HPAPC ATI'N 1

m,^_^Tr_-2
MULTI
UPXLO)

SUBSYSTEMS

TW'rA)

SUBSYSTEMS

XFPCA_ 2
W__^TTN3
RCVR2

RCVR LO)

SUBSYSTEMS

HPAPC AMP_2

HPAPC ATTN_3

m'APCATrN3
MULT 2

UPX LO)

59

Fourth, an object is created to represent the Channel 2 Amplifier Subsystem. Its

object name is CH2aMP. The Traveling Wave Tube amplifier is the only transponder

component in this subsystem. The object that represents this component, TWTA, is

attached as a subobject of the Cn2aMt' object.

Next, the Channel 2 Receiver Subsystem is represented by creating an object

called Ctt2RCVR and attaching it to the SVBSYSTEMS class. There are four components in

this subsystem. The objects which represent these components, 1Ft'CXMP2, WeCaTTN2,

RCVR2, and RC_LO, are attached as subobjects of the CH2RCVR subsystem.

60

Finally, the object that representsthe Channel 2 Up-converter Subsystem is

defined in Code Segment 4.8 as CH2UPX. Its subobjects are the nt,aec_,_Vle_2,

HPAPC_ATTN_3, HPAPC_ATTN 4, MULT_2, and UPX LO.

The remaining subsystem is the Matrix Switch Subsystem. There are five

components associated with this subsystem. These are represented by the tFeC_aM,"_3,

IFPC_,4MP_4, IFPC_aTIN_3, IFPC_aTI'N_4, and MSWITCH component objects. However, the

definition of the SUBSYSTEMS objects that represent this group of components differs from

the previous.

Recall from section 1.2.2 of the introduction that there are multiple permutations

through the matrix switch. The interconnectivity through the matrix switch was detailed

in Table 1.2 in chapter 1. To represent each of these signal paths, four objects are

required. The definitions for these are given in Code Segments 4.9a and 4.9b.

These objects are not attached as children of the SUBSYSTEMS class. Rather, they

are left independent. During run time, two of these objects are dynamically linked to the

SUBSYSTEMS class. This dynamic attachment is based upon the configuration of the matrix

switch at the time a diagnostic session begins. The dynamics of this configuration is

discussed in the next chapter.

The objects defined in Code Segment 4.9a represent the signal paths through the

matrix switch subsystem in its primary configuration. This configuration is: Channel 1

Input routed to Channel 1 Output and Channel 2 Input routed to Channel 2 Output. In

later discussions, this configuration is referred to as matrix switch configuration ,4.

Code Segment 4.9a: Dynamic Objects of the SUBSYSTEMS Class

61

(@O_ECT,_ MSWITCH_CH I 1

(@SUBOBJECTS = MSWITCH

IFPC AMP_3

n:PC_ATTN 3)

(@PROPERTIES a

D1AGNOSTICMODULE

ISOLATED

LEv__n_
LEVEL OUT
NAME

READING IN

READING OUT

SENSOR__
SENSOR_OUT

SUBSYSTEM_IN

S_YSTF.M_OUT))

(_OBJECT= MSWITCH CH22

(@SUBOBJECrS-- -MswrrcH
n_C_^MP_4
_PC_ArrN_4)

(@PROPERTIES=

DIAGNOSTIC_MODULE
ISOLATED

LEVEL IN

LEVF__O_
NAME

READING_IN

READING_OUT

SE_SOR_n_
SENSOR_OUT

SUBSYSTEM_IN

SUBSYSTEM otrr))

The objects defined in Code Segment 4.9b represent the signal paths through the

matrix switch subsystem in its secondary configuration. This configuration is: Channel

1 Input routed to Channel 2 Output and Channel 2 Input routed to Channel 1 Output.

In later discussions, this configuration is referred to as matrix switch configuration B.

Code Segment 4.9b: Dynamic Objects of the SUBSYSTEMS Class

62

(@OBJECT= MSWITCH CHI2

(@SUBOBJ ECTS = MSWITCH

_PC AMP_4
tFPC_ATTN=4)

(@PROPERTIES=

DIAGNOSTICMODULE
ISOLATED

LEVEL _
LEVEL OUT
NAME

READING_IN

RF_ADINO_O_
SENSOR IN

SENSOR_OUT

SUBSYSTEM IN

SUBSYSTEM OUT))

(@OBJECT-- MSWITCH_CH22

(@SUBOBJECTS = MSWITCH
IFPC AMP 3

_PC_ATT__3
(@PROPERTIES =

DIAGNOSTIC MODULE

ISOLATED

LEVEL IN

LEVEL_OUT
NAME

READING_IN

READING_OUT
SENSOR IN

SENSOROUT
SUBSYSTEM IN

SUBSYSTEMOUT))

As these frames represent components of the transponder, they are attached to the

COMPONENTS class structure as well. This linking of component object frames to the

components world can be interpreted' as an Is-A Link. Links to the subsystems world

represents Part-Of Links. That is, the IFPC Amplifier Is An amplifier and is Part Of the

Channel 1 Receiver system.

This approach not only aids the diagnostic tasks, but provides an efficient coding

approach. Through multiple inheritance, each subsystem component acquires information

from two parents. One provides information on performance while the other on

structure.

4.3 Representation of Sensory Components

63

Two types of sensory elements monitor both the response of the transponder and

the relayed signal. The first type is signal power level sensors. The other type

represents the data stream bit error rate (BER) registers located within the ground

terminal systems. The information used for diagnosis is provided by these sensors.

This structure is divided into subclasses according to the two types of sensors.

Each sensor is then represented by an object attached to the appropriate type subclass.

The following code segments create this structure in the object space of the expert

system.

4.3.1 Property Definitions

Properties are defined in Code Segment 4.10 to describe the DaTa reported by a

sensor, its NOMINAL value, the corresponding ERROR, and the TOLERANCE band of

acceptable error magnitudes. A string property called READING is used for the qualitative

descriptions which were introduced in section 1.3.

The string property LEVEZ is used for a qualitative description of the signal power

level reported by a sensor. This property is very important to the modules which

perform diagnostics on the individual subsystems of the transponder. Its utility is

discussed in great detail in subsequent chapters. However, the floating point property

z_Ro LEVEL is associated with this qualitative description. This property value is
m

initialized to the sensor reading below which the sensor can be assumed to be reporting

a "Zero" value.

64

Code Segment 4.10: Properties of the SENSORS Class

(@PROPERTY= DATA @TYPE= Flint;)

(@PROPERTY= ERROR @TYPE=Float;)

(@PROPERTY = EVALUATED @TYPE = Boolean;)

(@PROPERTY = LEVEL OTYPE = String;)

(@PROPERTY= NOMINAL _TYPE= Float;)

(_PROPERTY = READING @TYPE= Stri_;)

(@PROPERTY= RTN_LEVEL @TYPE= Boole_;)

(_PROPERTY = RTN_NOMINAL @TYPE= Boolean;)

(_PROPERTY = RTN_READING @TYPE = BoMe-.,ta;)

(@PROPERTY = TOLERANCE @TYPE = Float;)

(@PROPERTY= TYPE @TYPE=String;)

(@PROPERTY= ZERO_LEVEL @TYPE=Float;)

Once a sensor has been evaluated, a Boolean property called EVALUATEDis set to

tRUE. This property is used to poll a sensor to determine if its reported sensor data has

been evaluated. A value of _VE implies that the current descriptions of READING and

LEVEL reflect the current reported DATA value.

The remaining properties for SENSORS class are those required by the ToolBook"

Graphical User Interface (GUI). The string property TYPE is used to communicate the

type of sensor, "BER"or "PM," which is communicating information to the GUI. The

other properties, prefixed with RTN_, are used to initiate communication of sensor LeVEZ

and READING descriptions as well as NOMINAL sensor data values through the GUI.

4.3.2 Class Definitions

The SENSORS class hierarchy was introduced in chapter 3. The definitions which

create the structure shown in Figure 3.3 are given in Code Segment 4.11.

Code Segment 4.11: SENSORS Class Hierarchy

(@CLASS= SENSORS

(@SUBCLASSES=

PWR_SENSORS

BER_SENSORS)

(@PROPERTIES =
DATA

ERROR

EVALUATED

LEVEL

NAME

NOMINAL

READING

RTN LEVEL

RTN_NOMINAL
RTN READING

TOL_A.NCE

TYPE

ZERO_LEVEL)

(@CLASS = FWR_SENSORS)

(@CLASS = BER_SENSORS

(@SUBCLASSES=

CHI_BERI
CH2 BERs)

(_CLASS = CHI_BERt)

(@CLASS= C]O. BERJ)

(@CLASS= BAD SENSORS
(@PROPERTIES-= RTN_READING))

65

The first definition creates the SENSORS class in the object space of the FIDEX

system. This definition attaches two subclasses to the SENSORS frame. The class called

PWg_SENSORSis used to classify objects which represent signal power level sensors. The

second class, called BER_SENSORS is used to classify objects which represent data stream

bit error rate registers. The remainder of the definition for the SENSORS class attaches

the properties discussed in the previous section to this hierarchy.

Notice that the string property NAME is alSO associated with the SENSORS class.

This property was defined with the COMPONENTSclass and was therefore not redefined

in Code Segment 4.10. This property is used in the same context with sensors as it was

66

for components. It allows sensor objects to post their names in blackboard property

values and communicate with other objects and generic rules.

The next two definitions in Code Segment 4.11 create the classes PWR_SENSORS

and BEe_SENSORSin the object space of the FIDEX system. The BER SENSORS class is also

divided into two subclasses according to their channel; CHI_BERs and CH2_BERs. This was

done to simplify the analysis of frequency dependant fault states. It also demonstrates

how class structures can be cascaded to further describe component function and

organization. The fourth and fifth definitions create these classes.

The final definition is Code Segment 4.11 creates a class called BAD_SENSORS.

This class is used as a list of sensors which report "SAD" sensor readings. This class is

not a SENSORS subclass, but it is associated with the SENSORS world. The only property

used in connection with this class is the RTNREADING property. This is required to return

a list of the sensors evaluated as having "BAD"readings to the GUI.

4.3.3 Object Definitions

Each sensory component is represented by an object frame. These frames are

linked to their appropriate type subclass in both the components world, and the sensors

world. The definitions which create objects to represent sensory components are given

in Code Segments 4.12a and 4.12b. Code Segment 4.12a lists the definitions for the

BER registers. BER1, BER_Z, and BER_3 are associated with the channel 1 user data

stream. They are therefore attached to the SENSORShierarchy as CHI_BERs. BER_4, BER5,

and BER 6 are associated with the channel 2 user data stream. They are therefore

attached to the SENSORS hierarchy as CH2_BERs.

Like all other transponder components, sensory elements could potentially fail.

Therefore, each BER sensor is also represented FIDEX as a member of the component

67

world; belonging to the class of BER_REG/STERS that was discussed in section 2.3 and

section 4.1.

Code Segment 4.12a: BE.R_SENSOR Objects

(_OBJECT- BER_I

(_'I.ASSES =

CH I_BEI_

BER REGISTERS

(@OBJECT = BER_2

(@CLASSES =

CHI BERs
BER REGISTERS

(@OBJECT= BER_3

(@CLASSES=

CHI_BF_.R_

BER_REGISTERS

(@OBJECT = BF_4

(@ct.AssES =

CH2_BERs

BER_REGISTERS

(@OBJECT= BER_5

(_"LASSES =
CI-12 BERI

BER REGISTERS

(@OBJECT= BER_6

(@CLASSES=
CH2 BERI

BER_REGISTERS

))

))

))

))

))

))

Code Segment 4.12b lists the definitions for the signal power level sensors.

These eight sensors were listed in Table 1.1. The objects which represent PMJ through

t'M_8 are attached to the SENSORS hierarchy at the PWR_SENSORS node. To represent their

role as transponder components which could potentially fail, each signal power level

sensor is also represented FIDEX as a member of the component world; belonging to the

class of POWER METERS.

Code Segment 4.12b: PWR_SENSOR Objects

(_OBJECT- PM_i
(_'_.ASSES =

POWER_METERS

FWR_SENSORS

(@OBJECT= PM_2
(_'LASSES =

POWER_METERS

PWR_SENSORS

(@OBJF_:r= PM__
(@CLASSES =

POWERMETERS

FWR_SENSORS

(@OBJECT = PM_4
(@CLASSES=

POWER_METERS
PWR SENSORS

(@OBJECT= PM_5
(@CLASSES=

POWER_METERS
PWR SENSORS

(@OBJECT= PM_6
(@CLASSES =

POWER_METERS
PWR SENSORS

(@OBJECT= PM 7

(@,."LASSES =

POWER_METERS

PWR_SENSORS

(@OBJECT= PM 8

(@CLASSES =

POWER_METERS

_vR_s_soP.s

))

))

))

))

))

))

•))

))

68

4.4 Representation of Fault States

The transponder fault states are represented as objects in a class structure called

F,,tVLT"STaT_S. This class is also divided into several subclasses. Each subclass frame

represents the association of fault states to component types; such as amplifier faults,

attenuator faults, etc. Object frames representing the specific failure modes of the

transponderare then attached to the appropriate subclasses.

FIDEX to reason about both known and abstract faults.

69

This structure enables

The code segment which defines this structure is nearly identical to that of the

COMPONENTSclass. This is because the types of fault states axe associated with the types

of components.

4.4.1 Property Definitions

The properties associated with the FaULT_STaTESclass are listed in the next code

segment. These describe which COMeONENT the fault is associated with, its INFeRence

CATEGORY or priority, and the POWERSYMPTOM CROUP' with which is associated. A

Boolean property, VEedFIED, is used tO flag fault states which have been verified by the

diagnostic process. The final property listed is Vatue. This property is a reserved by

NEXPERT". The fault states represent the hypotheses of rules used during diagnosis.

This property is assigned the results of rule evaluations.

Code Segment 4.13: Properties of the FAULT_STATES Class

(_PROPERTY = COMPONENT @TYPE = String;)

(@PROPERTY= INF_CAT @TYPE=Float;)

(@PROPERTY= POWER_SYMlrrOM_GROUP @TYPE=String;)

(@PROPERTY = Value @TYPE = Special;)

(@PROPERTY = VERIFIED @TYPE = Boolean;)

In chapter 3, the CERTAINTY_ANAI.rStSclass was introduced. This is a superclass

of the FAULT STATES class. It is used to define the overhead required for inexact and
m

abstract reasoning; as discussed in section 3.3. Code Segment 4.14 gives the definition

of properties required for the CERTAINTYANALYSIS superclass.

70

Code Segment 4.14: Properties of the CERTAINTY_ANALYSIS Class

(@PROPERTY= AB @TYPE-- Flint;)

(@PROPERTY = AD @TYPE = Flint;)

(@PROPERTY-- CF @TYPE = Float;)

(@PROPERTY= CONFIDENCE @TYPE--Strlng;)

(@PROPERTY = MB @TYPE = Float;)

(_,PROPERTY = MD OTYPE = Float;)

Five floating point properties are used to represent each quantity in the MYCIN

equations. The current measures of belief and disbelief are represented by the MB and

MD properties. The accumulated belief and disbelief are represented by the aB and aD

properties. Finally, the overall confidence is represented by the CF property. A string

property called CONFIDENCE iS USed for a qualitative description of confidence.

4.4.2 Class Definitions

The definitions for classes in the FaULT_STaTES hierarchy are given in the

remaining code segments. First, the definition in Code Segment 4.15 creates the

superclass for CERTAINTY_ANALYSIS.The FAULT_STATESclass is attached as a subclass, and

the properties discussed above are defined with this class.

Code Segment 4.15: Definition of CERTAINTY_ANALYSIS Class

(@CLASS= CERTAINTY ANALYSIS

(@SUBCLASSES = FAULT_STATES

(@PROPERTIF..S =

AB

AD

CF

CONFIDENCE

LIB

MD))

71

Code Segment 4.16 defines the class for FAULT"_STATESin the object space of the

FIDEX system. The properties in Code Segment 4.13 are assigned and class for each

type of fault state attached as subclasses. The definitions for the classes which represent

these fault state types are given in Code Segment 4.17.

Code Segment 4.16: Definition of the FAULT_STATES Class

(_CLASS = FAULTSTATES

(@SUBCLASSES =
AMPLIFIER_FAULTS

ATrENUATOR_FAULTS

OaAs FET_FAULTS

LO FAULTS

MIXER_FAULTS

RECEIVER_FAULTS

SWITCH_FAULTS

TWTA FAULTS)

Each class defined in Code Segment 4.17 represents an association of a fault state

with a type of transponder component. The class called AMPLIFIER_FAULTS is used to

classify all fault states associated with AMPLIFIER components. The class called

ATTENUATOR_FAULTS is used to classify all fault states associated with ATTENUATOR

components. The class called GaAs_FET_FAULTS is used to classify all fault states

associated with GaAsFET components. The class called LO_FaULTS is used to classify all

fault states associated with LOCAL_OSCII_TOR components. The class called

MtXF.R_FaULTS is used to classify all fault states associated with MrXER components. The

class called RECEIVERFAULTS is used to classify all fault states associated with RECEIVER

components. The class called SWITCH_FaULTS is used to classify all fault states associated

with SWITCH components. And finally, the class called TWTA_FaULTS is used tO classify

all fault states associated with TWTA components.

Code Segment 4.17: Subclasses of the FAULT_STATES Hierarchy

(_CLASS = AMPLIFIER_FA LILTS

({_CLA SS = AT'I'ENUATOR_FA ULTS

(@CLASS= GaAs_FET_FAULTS)

(_2LASS = LO_FAULTS)

(_CLASS= MIXERFAULTS)

(@CLASS- RECEIVER FAULTS)

(@CLASS -_ SWITCH_FAULTS)

(_ZI.ASS -- TWTA FAULTS)

72

The discussion of the objects which represent the fault states in this hierarchy is

presented in later chapters. As each diagnostic module is presented, the fault states

associated with that subsystem are discussed.

CHAPTER V

FIDEX KERNEL KNOWLEDGE BASE

This chapter continues discussion on the kernel of the frame-based knowledge of

the FIDEX system. The previous chapter discussed the definition of classes, objects, and

properties to represent the structure, operation, and fault states of the ACTS transponder

system. In this chapter, the object dynamics of the FIDEX.tkb knowledge base are

discussed.

5.1 Inference Strategies

The first topic of importance is the definition of the global inheritance and

inference strategies used by the FIDEX system, see Code Segment 5.1. The first two

definitions establish the global strategy for value inheritance within frame hierarchies.

Upward value inheritance is disabled and downward value inheritance is enabled.

The next two definitions establish the inheritance strategies for property

inheritance within an object/subobject hierarchy. These are only included for

completeness. There is no property inheritance in the object/subobject hierarchies within

the FIDEX system. All such inheritances, both upward and downward, are disabled.

The fifth and sixth definitions establish inheritance strategies within class

hierarchies. As for the value inheritance, class properties are inherited downward only.

The seventh definition in Code Segment 5.1 enables breadthwise inheritance through a

lattice of hierarchies. This definition is very important. NEXPERT"'s default setting

73

74

for this global is FALSE. It must be set to TRUe` for the lattice structure of the FIDEX

system to function properly. The eighth definition disables parent-to-child inheritance

during run time. Setting this global to FALSe. enables class level properties to be assigned

values which are not inherited by its child objects. The importance of this is elaborated

upon in the discussion of abstract fault states.

Code Segment 5.1: Global Inference Strategy Definitions

(@VERSION--

(_LOBALS-- @INHVALUP = FALSE;

@INHVALDOWN = TRUE;

@INHOBJUP ffiFALSE;

@[NHORIDOWN = FALSE;

@IINHCLASSUPffi FALSE;

@INttCI.,ASSDOWN = TRUE;

@INHBREADTH =TRUE;

@IINI-IPA_ = FALSE;

@PWTRUE =TRUE;

@FWFALSE =TRUE;

@PWNOTKNOWN = TRUE;

@EXrmWRD=TRtr_
@PTGATES =TRUE;

@PFACTIONS = TRUE;

@SOURCESON = TRUE;

_CACTIONSON ffiTRUE;

The next six definitions establish the global strategy for propagation of

inferencing. These definitions are changed periodically by certain methods. However,

this global strategy is maintained throughout most of the knowledgebase. To enable

foreword chaining, full propagation is required. Therefore, propagation while true,

false, and notknown are enabled. Since foreword chaining in NEXPERT" is

accomplished through a mechanism called gating, propagation through gates must also

be enabled. And finally, since many foreword chaining strategies are initiated from

meta-slot actions, propagation from actions must also be enabled. The exhaustive

backward strategy is enabled to allow foreword actions to evaluate contexts in which one

hypothesis is supported by multiple rules.

75

The final two definitions in Code Segment 5.1 enable the order-of-sources (OS),

(@SOURCES....), and if-change (IC) actions, (@CAC770NS=...), within property slots. These

are fundamental to the performance of the FIDEX system. Both must be set to TgVE.

5.2 Initialization of Object/Class Parameters

The values of many of the properties introduced in chapter 4 represent constant

quantities. Such properties are those used to represent object names, input/output

parameters, and nominal parameter values. This section discusses the initialization of

these properties using both hard-coded and dynamic assignments.

Property values can be initialized through it meta-slots in two manners. The

FIDEX kernel knowledge base uses both of these. The first way to initialize a property

value is by using the initial value, (@INITVAL....), definition within a slot definition.

When this method is used, the value of the slot is initialized to the defined value during

the initialization of the knowledge base.

The second method is to include a run time value directive in the OS of the slot

that is associated with an object or class property. This directive provides the sources

for a constant value during the run time of the inference process.

5.2.1 Initialization of COMPONENTS Parameters

The properties associated with the COMPONENTS class were introduced in section

4.1 and defined in Code Segment 4.1. Several of these provide information on the

structure of the transponder system or nominal values for other component parameters.

Specifically, these properties are COMeONENT_tN, COMeONENT_OUT, DESCtUertO_¢, NAME,

76

NASA_ID, as well as the NOMINAL_values for FREQUENCY, FREQUENCY_IN, FREQUENCY_OUT,

GAIN, POWER_tN, and POWER_Otrf.

Names of Component Objects

The slot definitions for initializing the name of COMPONENTS objects are given in

Code Segments 5.2a through 5.2c. These definitions initialize the NAME property of each

object that represents components of the transponder system. Both initial value and run

time value techniques are used.

Code Segment 5.2a: Initialization of < [COMPONENTSI >.NAME

(@SLOT= GAASFEF.NAME

(@INrrVAL= "GAASFET')

(@SOURCES = 0RunTimcValu¢ ('GA.ASFET'))))

(@SLOT= HPAPC_AMP_I .NAME

(@INITVAL = "HPAPC AMP_I ")

(@SOURCES = (RunTimeValuc ("HPA.PE_AMP..I "))))

(@SLOT= HPAPC_AMP_2.NAME

(@INITVAL= "HPAPC_AMP..2")

(@SOURCES = (RunTimcValu¢ ('HPAPC_AMP_2"))))

(@SLOT= HPAI:_ A'I'rN_I .NAME

(@INrrVAL= "HPAPC_ATYN_I ")

(@SOURCES --- (Run'l"imeValue ('HPAI:_ ATTN_I "))

(@SLOT= HPAPC_ATTN_2.NAME

(@INrrVAL= "HPAPC_ATTN_2")

(@SOURCES = (RunTimeValu¢ ('HPAPC_ATTN_2"))

(@SLOT ffi HPAPC_ATTN..3.NAME

(@INrrVAL= "HPAPC_ATTN_3")

(@SOURCES == 0gunTimcValue ('HPAPC_A'r'I'N_3"))

(@SLOT= HPAPC_ATTN_4.NAME

(@INrrVAL= "HPAPC_ATTN_4")

(@SOURCES = 0RunTimcValu¢

))

))

))

("HPA.PC_ATI'N_4 "))))

77

Code Segment 5.2b: Initialization of <ICOMPONENTSI >.NAME

(@SLOT= IFPC_AMP_I .NAME

(@nqrrvAL= "n:PC_AMP..t')
(@SOURCES = (RunTimeValue

(@SLOT= WPC_AMP..2.NAME
(@_rrVAL= -wpc AMP._2")
(@SOURCES = (RunTimeValue

(@SLOT= IF1__AMP. 3 .NAME

(@_rrvAL= "_'PC_AMP_3")
(@SOURCES = (RunTimeValue

(@SLOT= n:PC_AMP.4.UAME
(@n_rrvAL-- "IFPC_AMP4")
(@SOURCES = (RunTimeValue

(@SLOT= IFPC_A'I'rN_ 1 .NAME

(@INITVAL= "IFPC_ATTN_I')

(@SOURCES = (RunTimeValue

(@SLOT= IFPC_ATTN_2.NAME

(@INrrvAL= "IFPC A'I'rN 2")

(@SOURCES = (RunTimeValue

(@SLOT= IFPC_A'VFN._3 .NAME

(@INITVAL= "IFPC A'I"rN_3 ")

(@SOURCES = (RunTimeValue

(@SLOT= IFPC_ATTN_4.NAME

(@n_rrvAL= "n:pc_ATrN_4")
(@SOURCES = (RunTimeValue

('IFPC_AMP !")))

('nq_cAMP. 2-)))

('n:Pc_AMP 3")))

('WPC_AMP_4")))

('IFPC ATTN_I')))

('IFPC ATTN_2")))

('[FPC A'I'rN 3")))

('IFPC_ATTN_4")))

(@SLOT= RCVR_LO.NAME

(@INITVAL= "RCVR_LO')

(@SOURCES = (RunTimeValue ('RCVR LO')))

(@SLOT= RCVR_2.NAME

(@n_rrvAL= "RCVR_2")

(@SOURCES= (RunTimeValue ('RCVR_2")))

(@SLOT = RCVR_I .NAME

(@n_rrvAL= "RCVR_t')
(@SOURCES= (RunTimeValue ('RCVR_I ")))

(@SLOT= MULT 2.NAME

(@INFrVAL= "MULT 2")

(@SOURCES = (RunTimeValue ('MULT_2")))

(@SLOT= MULTI .NAME

(@INrrvAL= "MULT_I ")

(@SOURCES = (RunTimeValue ('MULTI ")))

(@SLOT= MSWTrCH.NAME

(@IN1TVAL= "MSWiTCH')

(@SOURCES = (RunTimeVal.© ('MSWTrCH')))

78

Code Segment 5.2c: Initialization of < [COMPONENTS[>.NAME

(@SLOTffi TWTA.NAME

(@_r_AL= "TWTA')

(@SOURCES = (RunTimeValue ('TWTA'))))

(@SLOTffi UPX_LO.NAME

(@INITVAL-- "UPX_LO')

(@SOURCES _ffi (RunTimeValue ('UPX LO'))))

Descriptions of Component Objects

The slot definitions for initializing the descriptions of COMPONENTSobjects are

given in Code Segments 5.2a through 5.2c. These definitions initialize the DESCRIPTION

property of each object that represents components of the transponder system.

Code Segment 5.3a: I_itialization of < I COMPONENTSI >.DESCRIPTION

(@SLOT= GAASFEr.DESCR.IPTION

(@INrrVALffi "Galllum-Arsenlde Field Effect Transistor Amplifier')

(@SOURCES ffi (RunTimeValua ('Gallium-Araenlde Field Effect Transistor Amplifier'))

(@SLOT= HPAPC_AMP_I .DESCRIFrlON

(@INITVAL= "Channel 1 HPAIPC Driver Amplifier')

(@SOURCES ffi (RunTimeValua ('Channel 1 HPAIPC Driver Amplifier')))

(@SLOT = HPAPC_AMP..2.DESCRIPTION

(@INrrVAL== "Channel 2 HPAIPC Driver Amplifier')

(@SOURCES ffi (RunTimeValua ('Channel 2 HPAIPC Driver Amplifier')))

(@SLOT ffi HPAI__ATTN_I .DESCRIFTION

(@INrFVAL= "Channel I High Power Amplifier Input Attenuator')

(@SOURCES= (RunTimeValua ('Channel 1 High Power Amplifier Input Attenuator'))

(@SLOT ffi HPAPC_A'TTN 2. DESCRIPTIO N

(@INrrVALffi "Channel I HPAIPC Driver InputAttenuator')

• (@SOURCES ffi (RunTimeValue ('Channel 1 HPAIPC Driver Input Attenuator'))

))

(@SLOT ffi HPAPC_ATrN_3 .DESCRIPTION

(@INrrVALffi "Channel 2 HPAIPC Driver Input Attenuator')

(@SOURCES ffi (RunTimeValue ('channel 2 HPAIPC Driver Input Attenuator'))))

(@SLOT = HPAPC_ATTN_4.DESCRIPTiON

(@INrrVALffi "channel 2 High Power Amplifier Input Attenuator')

(@SOURCES---- (RunTimeValua ('Channel 2 High Power Amplifier Input Attenuator'))

))

79

Code Segment 5.3b: Initialization of < [COMPONENTSI >.DESCRIPTION

(@SLOT= IFPC_AMP 1.DESCRIPTION
(@INITVAL.- "Channel 1 Matrix Switch Input IFPC Amplifier')
(@SOURCES= 0RunTimeValue ('Channel 1 Matrix Switch Input IFPC Amplifier'))

(@SLOT= IFPC_AM P_2. DESCRII'TION
(@INITVAL= "Channel 2 Matrix Switch Input IFPC Amplifier')
(@SOURCES = (RunTimeValue ('Channel 2 Matrix Switch Input IFPC Amplifier'))

(@SLOT= IFPC_AMP_3 .DESCRIPTION
(@INITVAL-- "Channel I Up-converter Input IFPC Amplifier')

(@SOURCES= (RunTimeValue ('Channel 1 Up-converter Input IFPC Amplifier'))

(@SLOT = IFPC_AMP..4.DESCRIPTION
(@IN1TVAL= "Channel 2 Up-converter Input IFPC Amplifier')
(@SOURCES = (RunTimeValue ('Channel 2 Up-converter Input IFPC Amplifier'))

(@SLOT = IFPC_ATTN_I .DESCRIPTION
(@INITVALm "Channel I Matrix Switch Input IFPC Attenuator')
(@SOURCES = (RunTimeValue ('.Channel 1 Matrix Switch Input IFPC Attenuator')))

(@SLOT = IFPC_ATI'N_2 .DESCRIPTION
(@INITVAL= "Channel 2 Matrix Switch Input IFPC Attenuator')

(@SOURCES = (RunTimeValue ('Channel 2 Matrix Switch Input IFPC Attenuator')))

(@SLOT = IFPC_ATI'N..3 .DESCRIPTION
(@INITVAL-- "Channel 1 Up-converter Input IFPC Attenuator')
(@SOURCES = (RunTimeValue ('Channel 1 Up-converter Input IFPC Attenuator'))

(@SLOT= IFPC_ATTN_4.DESCRIPTION
(@INrI'VAL= "channel 2 Up-converter Input IFPC Attenuator')
(@SOURCES= (RunTimeValue ('Channel 2 Up-converter Input IFPC Auenuator'))

(@SLOT = MSWITCH. DESCRIPTION
(@INITVAL= "Ford Matrix Switch')
(@SOURCES= (RunTimeValue ('Ford Matrix Switch'))))

(@SLOT= MULTI .DESCRIPTION
(@INITVAL= "Channel I Up-converter Mixer')
(@SOURCES = 0RunTimeValue ('channel 1 Up-converter Mixer'))))

(@SLOT= MULT 2.DESCRIPTION
(@INITVAL= "Channel 2 Up-convertcr Mixer')

(@SOURCES = (RunTimeValue ('Channel 2 Up-converter Mixer'))))

(@SLOT--- RCVR_I .DESCRIFHON
(@INrI'VAL= "Channel 1 Receiver Unit')
(@SOURCES,_ (RunTimeValue ('Channel I Receiver Unit'))))

(@SLOT= RCVR_2.DESCRIFrlON
(@INITVAL= "Channel 2 Receiver Unit')
(@SOURCES = (RunTimeValue ('Channel 2 Receiver Unit'))))

(@SLOT = RCVR_LO.DESCRIPTION
(@INrI'VAL= "Receiver Units Local Oscillator')
(@SOURCES = (RunTimeValue ('Receiver Units Local Oscillator'))))

Code Segment 5.3c: Initialization of < ICOMPONENTS[>.DESCRIPTION

80

(@SLOT = TWTA.DESCRIPTION

(@PIERCED = "Traveling Wave Tube Amplifier')

(@SOURCES = (Pierced ("Traveling Wave Tube Amplifier'))))

(@SLOT= PERS U ADE_LO.DESCRIPTION
(@PIERCED = "Up-converter Mixer Units Local Oscillator')
(@SOURCES = (Pierced ('Up-converter Mixer Units Local Oscillator'))))

Retrieval of Remaining Property Values from Database

Only the values of properties for NAME and DESCRIPTION were hard-coded into the

frame structure of the COMPONENTSworld. The values for the remainder of the

initialized properties are retrieved from COMPONT.nxp database. This database is

included in section A.2 of Appendix A. Code Segments 5.4a through 5.4c give the

definitions for OS slot actions which retrieve these values. The source actions for each

of these slots are identical. Therefore, only the first slot definition in Code Segment 5.4a

are discussed.

Whenever the value any of these properties for an object in the COMPONENTSclass

is unknown, it is retrieved from a database. The first argument of the retrieve directive

defines the name of the database to retrieve from. The type, or format, of the database

is set to the NEXPERT" DataBase type. Forward chaining is disabled so that changes

to these property values do not affect the agenda. And, the retrieve unknown is set

active; enabling unknown values to be retrieved from the database.

81

Code Segment 5.4a: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT-- COMPONENTS.COMPONENT_IN

(@SOURCES= (Retrieve ('COMPONT.nxp =) \

(@TYPE-- NXPDB; \

@FWRD = FALSE; \

@UNKNOWN-TRUE; \

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, \

NOMINAL_FREQUENCY_OUT, NOMINALGAIN, \

NOMINAL_POWER_IN, NOMINAL_POWER_OUT; \

@FIELDS--'NAME', "COMPONENT_IN', "COMPONENT_OUT', "NASA_ID', \

"NOM_FREQ ", "NOM_FREQ IN ","NOM_FREQ OUT ", \

"NOM_G AIN =, "NOM_POWER_IN ", "N OM_POWER_OUT"; \

@ATOMS = SELF;))))

(@SLOT-- COMPONENTS.COMPONENT_OUT

(@SOURCES = (Retrieve ('COMPONT.nxp ") \

(@TYPE-- NXPDB; \

@FWRD = FALSE; \

@UNKNOWN =TRUE; \

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, \

NOMINALFREQUENCY_OUT, NOMINAL_GAIN, \

NOMINALPOWER_IN, NOMINAL_POWER OUT; \

@FIELDS ='NAME', "COMPONENT_IN', "COMPONENT_OUT', "NASA_ID', \

"NOM_FREQ', "NOM_FREQ IN ","NOM_FREQ_OUT =, \

•NOM_GAIN', "NOM_POWER_IN ","NOM POWER_OUT"; \

@ATOMS -- SELF;))))

(@SLOT = COMPONENTS.NASA_ID

(@SOURCES- (Retfi©v© ('COMPONT.nxp ") \

(@TYPE = NXPDB; \

@FWRD = FALS E; \

@UNKNOWN =TRUE; \

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, \

NOMINAL_FREQUENCY_OUT, NOMINAL_GAIN, \

NOMINAL_POWER_IN, NOMINAL_POWER_OUT; \

@FIELDS='NAME', "COMPONENT IN', "COMPONENT_OUT', "NASA_ID', \

=NOM_FREQ', "NOM_FREQ IN', "NOM_FREQ OUT', \

"NOM_G AIN ", "NOM_POWERIN ", "NOM POWER_OUT"; \

@ATOMS -- SELF;))))

(@SLOT: COMPONENTS .NOMINAL_FREQUENCY

(@SOURCES: (Retrieve ('COMPONT.nxp ") \

(@TYPE= NXPDB; \

@FWRD = FALSE; \

@UNKNOWN =TRUE; \

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID, \

NOMINALFREQUENCY, NOMINAL_FREQUENCY IN, \

NOMINALFREQUENCY_OUT, NOMINALGAIN, \

NOMINAL_POWER IN, NOMINALPOWER_OUT; \

@FIELDS= "NAME', "COMPONENT_IN =, "COMPONENT OUT', "NASA_ID', \

"NOM_FREQ', =NOM FREQ_IN', "NOM_FREQ_OUT', \

"NOM_GAIN', "NOM_POWER_IN', "NOM_POWER_OUT'; \

@ATOMS ,= SELF;))))

82

Code Segment 5.4b: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT= COMPONENTS .NOMINALFREQUENCY_IN

(@SOURCES -- (Retrieve ('COMPONT.nxp ") \

(@TYPE = NXPDB; \

@FWRD-- FALSE; \

@UNKNOWN =TRUE; \

@PROPS = NAME, COMPONENT_IN, COMPONENT_OUT, NASA ID, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, \

NOMINALFREQUENCY_OUT, NOMINAL_GAIN, \

NOMINALPOWER_IN, NOMINALPOWER_OUT; \

@FIELDS-- "NAME', "COMPONENT_IN', "COMPONENT_OUT', =NASA_ID', \

"NOM_FREQ', "NOM_FREQ_IN ", "NOM_FREQ_OUT ", \

"NOM_GAIN', "NOM POWER_IN', "NOM_POWER_OUT'; \

@ATOMS=SELF;))))

(@SLOT = COMPONENTS .NOMINAL_FREQUENCY_OUT

(@SOURCES = (Retrieve ('COMPONT.nxp =) \

(@TYPE = NXPDB; \

@FWRD = FALSE; \

@UNKNOWN =TRUE; \

@PROPS=NAME, COMPONENT_IN, COMPONENT_OUT, NASA_D, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY_IN, \

NOMINAL_FREQUENCY OUT, NOMINAL_GAIN, \

NOMINAL_POWER_IN, NOMINAL_POWER_OUT; \

@FIELDS = "NAME', =COMPONENT_IN', "COMPONENT_OUT', "NASA_ID =, \

"NOM_FREQ', =NOM_FREQ_IN ", "NOM FREQ_OUT', \

"NOM_GAIN ", • NOM_POWER_IN ", "NOM_POWER_OUT"; \

@ATOMS = SELF;))))

(@SLOT = COMPONENTS .NOMINALGAIN

(@SOURCES = (Rctricv© ('COMPONT.nxp') \

(@TYPE = NXPDB; \

@FWRD = FALSE; \

@UNKNOWN =TRUE; \

@PROPS--NAME, COMPONENT_IN, COMPONENT_OUT, NASA_ID, \

NOMINAL_FREQUENCY, NOMINAL_FREQUENCY IN, \

NOMINAL_FREQUENCY OUT, NOMINAL_GAIN, \

NOMINAL_POWER_IN, NOMINALPOWER_OUT; \

@FIELDS--"NAME =, "COMPONENT IN', "COMPONENT_OUT', "NASA_ID=, \

"NOM_FREQ", °NOM_FREQ._IN ", "NOM_FREQ_OUT', \

• NOM_G AIN ", "NOM POWER_IN', "NOM_POWER_OUT"; \

@ATOMS = SELF;))))

(@SLOT = COMPONENTS .NOMINALPOWER_IN

(@SOURCES = (Retrieve ("COMPONT.nxp') \

(@TYPE = NXPDB; \

@FWRD= FALSE; \

@UNKNOWN =TRUE; \

@PROPS--NAME, COMPONENT IN, COMPONENT_OUT, NASA_ID, \

NOMINAL_FREQUENCY, NOMINAL FREQUENCY_IN, \

NOMINAL_FREQUENCY OUT, NOMINAL_GAIN, \

NOMINAL_POWER_IN, NOMINAL_POWER_OUT; \

@FIELDS= "NAME', "COMPONENT_IN', "COMPONENT_OUT =, "NASA_ID', \

• N OM_FREQ ", "N OM_FREQ_IN •, "NOM_FREQ_O UT ", \

"N OMGAIN ", "NOM_POWER_IN", "N OM_POWER_OUT"; \

@ATOMS = SELF;))))

83

Code Segment SAc: Slot Actions to Retrieve & Initialize Properties of COMPONENTS Class

(@SLOT= COMPONENTS .NOMINAL_POWER_OUT

(@SOURCES -- (Retrieve ('COMPONT.nxp') \

(@TYPE= NXPDB; \

@FWRD -- FALSE; \

@UNKNOWN=TRUE;

@PROPS = NAME, COMPONENT_IN, COMPONENT OUT, NASA_ID, \

NOMINAL FREQUENCY, NOMINAL_FREQUENCY IN, \

NOMINAL_FREQUENCY OUT, NOMINALGAIN, \

NOMINALPOWERIN, NOMINAL_POWER OUT; \

@FIELDS= "NAME', "COMPONENT IN', "COMPONENT OUT', "NASA ID', \

"NOM_FREQ =, "NOM_FREQ..IN', "NOM FREQ..OUT', \

•NOM_GAIN ", "NOM POWER_IN ", "NOM_POWER_OUT"; \

@ATOMS=SELF;))))

The next two parameters list the property names for which values are to be

retrieved and a corresponding list of database field names. Notice that whenever any of

these property values is pursued all of them are retrieved from the database. This was

done to make the data accesses more efficient. Because the entire record is retrieved on

the first access, only one database access is required for each COMPONENTS object. The

final parameter of the retrieve directive lists the atoms for which the retrieve is effected.

This is a class level definition of sources that are inherited by each COMPONENTS object.

Defining the atom as SELF causes only the record that corresponds to the current object

to be retrieved.

5.2.2 Initialization of SUBSYSTEMS Parameters

The properties associated with the SUBSYSTEMS class were introduced in section

4.2 and defined in Code Segment 4.6. Several of these provide information on the

structure of the transponder subsystems or nominal values for other parameters.

Specifically, these properties are NAME, SENSOR_IN, SENSOR_OUT, SUBSYSTEM_IN, and

SUBSYSTEM OUT.

Names of Subsystem Objects

84

The slot definitions for initializing the NAME property of SUBSYSTEMS objects axe

given in Code Segment 5.5. This segment also lists definitions for the dynamic objects

which represent the channels through the matrix switch.

Code Segment 5.5: Initialization of < ISUBSYSTEMSI >.NAME

(@SLOT = CH 1AMP.NAME

(@INrrvAL= "CHIAMP')

(@SOURCES= (RunTimeValue ('CH1AMP'))))

(@SLOT = CH IRCVR.NAME

(@INITVAL-- "CHIRCVR')

(@SOURCES -- (RunTimeValue ('CH I RCVR "))))

(@SLOT = CH 1 UPX.NAME

(@INrI'VAL = "CHIUPX')

(@SOURCES = (RunTimcValu© ('CH 1UPX'))))

(@SLOT = CH2AMP.NAME

(@INITVAL = "CH2AMP')

(@SOURCES = 0RunTimeValue ('CH2AMP'))))

(@SLOT = CH2RCVR.NAME

(@INrI'VAL= "CH2RCVR')

(@SOURCES = (RunTimeValue ('CH2RCVR'))))

(@SLOT= CH2UPX.NAME

(@INITVAL= "CH2UPX';)

(@SOURCES = 0Run'rimcValu¢ ('CH2UPX'))))

(@SLOT= MSWITCH_CH I I .NAME

(@INITVAL= "MSWITCH I I ")

(@SOURCES = (RunTimeValue (°MSWITCH_I 1 "))))

(@S LOT = MSWITCH_CH 12. NAME

(@INrI'VAL= "MswrrcH_I2")

(@SOURCES = 0tunTimeValue ('MSWITCH_I2"))))

(@SLOT= MSWlTCH_CH21 .NAME

(@INITVAL= "MSWlTCH_CH21")

(@SOURCES= 0RunTimeValue ('MSWITCH_CH21 "))

(@SLOT = MSWITCH_CH22.NAME

(@INITVAL= "MSWITCH_CH22")

(@SOURCES = (RunTimeValu¢ ('MSWITCH_CH22"))

))

))

Linking of Subsystem Input/Output Properties

85

The slot definitions for initializing the input/output parameters of SUBSYSTEMS

objects are given in Code Segment 5.6a through 5.6d. These definitions initialize the

SENSOR_IN, SENSOR_OUT, SUBSYSTEM_IN, and SUBSYSTEM OUT properties of each object that

represents subsystems of the transponder system.

86

Code Segment 5.6a: Initialization of < JSUBSYSTEM$ I >.SENSOR_IN /_OUT

(@SLOT ffi CH IAMP.SENSOR_IN

(@INrFVAL= "PM5 =)

(@SOURCES= (RunTimcValu© ('PM_5"))) .)

(@SLOT ffi CH 1 AMP.SENSOR_OUT

(@INITVAL= "PM 7")

(@SOURCES = (RunTimeValue

(@SLOT = CHI RCVR.SENSORIN

(@INI'I'VAL= "PM 0")

(@SOURCES= (RunTimeValue

(@SLOT= CH I RCVR.SENSOR_OUT

(@INITVAL= "PMI')

(@SOURCES ffi (Run'rimeValue

(@SLOT= CH1UPX.SENSOR IN

(@IN1TVAL= "PM..3")

(@SOURCES ffi (RunTimeValuc

(@SLOT ffi CH 1UPX.SENSOR_OUT

(@INITVAL=, "PM..5")

(@SOURCES = (RunTimeValue

(@SLOT ffi CH2AMP.SENSOR_IN

(@INITVAL= "PM 6")

(@SOURCES = (Run'TimeValue

(@SLOT = CH2AMP.SENSOR_OUT

(@INITVAL= "PM 8")

(@SOURCES = (RunTimeValue

(@SLOT= CH2RCVR.SENSOR IN

(@INITVAL= "PM.0")

(@SOURCES= (RunTimeValue

(@SLOT = CH2RCVR.SENSOR_OUT

(@INITVAL= "PM~2")

(@SOURCES ffi (RunTimeValue

(@SLOT= CH2UPX.SENSOR_IN

(@INITVAL= "PM 4")

(@SOURCES : (RunTimeValue

(@SLOT = CH2UPX.SENSOR_OUT

(@INI'rVAL= "PM 6")

(@SOURCES 'ffi (RunTimeValue

('PM_7"))))

('PM..0"))))

('PM_I "))))

('PM_3"))))

('PM..5 "))))

('PM_6"))))

('PM_8"))))

('PM. 0"))))

('PM_2"))))

('PM_4"))))

('PM_6"))))

87

Code Segment 5.6b: Initialization of <]SUBSYSTEMSI >.SENSOR_IN /_OUT

(@SLOT = MSWITCH_CH ! 1.SENSOR_IN

(@INrrVAL= "PM_I ")
(@SOURCF.$ = (RunTimcValu¢ ('PM_I'))

(@SLOT,= MSWITCH_CH 11 .SENSOR_OUT
(@INH'VAL- "PM_3")
(@SOURCES -- (RunTimcValuc ('PM_3"))

(@SLOT = MSWITCH CH 12.SENSOR_IN

(@INITVAL = "PM_I ")
(@SOURCES= (RunTimcValuo ('PM_I "))

(@SLOT= MSWITCH_CH 12.SENSOR_OUT

(@INrFVAL= "PM_4")

(@SOURCES = (RunTimeValu¢ ('PM 4"))

(@SLOT = MswrrcH CH21 .SENSOR_IN
(@INrI'VAL= "PM 2")
(@SOURCES= (Run'rim¢Valuo ('PM_2"))

(@SLOT = MSWITCH_CH21 .SENSOR_OUT

(@iNrrvAL= "PM3 °)
(@SOURCES = (RunTimeValu¢ ('PM_3 "))

(@SLOT --- MswrrcH CH22.SENSOR_IN

(@INITVAL = "PM_2")
(@SOURCES = (RunTim©Valu¢ ('PM_2"))

(@SLOT = MSWlTCH CH22 .SENSOR_OUT
(@INITVAL= "PM_4")
(@SOURCES -- (RunTimcValuc ('PM._4"))

))

))

))

))

))

))

))

C -Y

88

Code Segment 5.6c: Initialization of < [SUBSYSTEMS[>.SUBSYSTEM IN /_OUT

(@SLOT= CH l AMP.SUBSYSTEM_IN

(@INITVAL= "CHIUPX')

(@SOURCES = (RunTimeValue ('CH 1 UPX'))))

(@SLOT = CH 1AMP.SUBSYSTEM_OUT

(@INrFVAL-- "NONE')

(@SOURCES -- (RunTimcValue ('NONE'))))

(@SLOT-- CH I RCVR.SUBSYSTEM IN

(@INITVAL- "NONE')

(@SOURCES = (RunTimeValue ('NONE'))))

(@S LOT = CH IRCVR.SUBSYSTEM_OUT

(@INITVAL= "MSW1TCH')

(@SOURCES-- (RunTimeValue ('MSWITCH'))

(@SLOT = CH 1UPX.SUBSYSTEM_IN

(@INITVAL = "MSW1TCH')

(@SOURCES = (RunTimeValue

))

(@SLOT= CH 1UPX.SUBSYSTEM OUT

(@INITVAL,,, "CHIAMP')

(@SOURCES = (RunTimeValue

('MSWITCH'))))

(@SLOT= CH2AMP.SUBSYSTEM_IN

(@INH'VAL= "CH2UPX')

(@SOURCES = (RunTimeValue

('CHIAMP'))))

(@SLOT = CH2AMP.SUBSYSTEM_OUT

(@INITVAL= "NONE')

(@SOURCES = (RunTimcValue

('CH2UPX'))))

(@SLOT= CH2RCVR.SUBSYSTEM_IN

(@INITVAL= "NONE')

(@SOURCES= (RunTimeValue

('NONE'))))

('NONE'))))

(@SLOT = CH2RCVR.SUBSYSTEM_OUT

(@INITVAL= "MSW1TCH')

(@SOURCES = (RunTimeValue ('MswrrcH "))))

(@SLOT = CH2UPX.SUBSYSTEM_OUT

(@INITVAU- "CH2AMP')

(@SOURCES = (RunTimeValue ('CH2AMP'))))

(@SLOT= CH2UPX.SUBSYSTEMIN

(@iNrrvAL= "MSW1TCH')

(@SOURCES = (RunTimeValue ('MSWITCH'))))

Code Segment 5.6d: Initialization of < ISUBSYSTEM$1 >.SUBSYSTEM IN /_OUT

89

(@SLOT = MSW1TCH_CH 1 ! .SUBSYSTEM_IN

(@INrFVAL= "CHIRCVR')

(@SOURCES= (RunTimeValue ('CHIRCVR'))

(@SLOT= MSWITCH_CH ! 1 .SUBSYSTEM_OUT

(@INrrvAL= "CH1UPX')

(@SOURCES = (RunTimeValu© ('CH 1 UPX'))

(@SLOT = MSWITCH CH 12 .SUBSYSTEM_IN

(@INrlWAL= "CH i RCVR')

(@SOURCES = (RunTimeValue ('CH I RCVR'))

(@SLOT= MSWITCH_CHI2,SUBSYSTEMOUT

(@INITVAL= "CH2UPX')

(@SOURCES -- (RunTimeValue ('CH2UPX'))

(@SLOT-- MSWITCH_CH21 .SUBSYSTEM_IN

(@INITVAL= "CH2RCVR')

(@SOURCES = (RunTimeValue ('CH2RCVR'))

(@SLOT-- MSWITCH_CH21 .SUBSYSTEM OUT

(@INITVAL--- "CHIUPX')

(@SOURCES = (RunTimeValue ('CH2UPX'))

(@SLOT= MSW1TCH_CH22.S UBS YSTEM_IN

(@INITVAL= "CH2RCVR')

(@SOURCES= (RunTimeValue ('CH2RCVR'))

(@SLOT-- MSW1TCH CH22 .SUBSYSTEM_OUT

(@INITVAL-- "CH2UPX')

(@SOURCES -- (RunTimeValu¢ ('CH2UPX'))

))

))

))

))

))

))

))

))

5.2.3 Initialization of SENSORS Parameters

The properties associated with the SENSORS class were introduced in section 4.3

and defined in Code Segment 4.10. Several of these provide information on nominal

values and for other parameters. Specifically, these properties are DESCRIPTION, NAME,

NOMINAL, TOLERANCE, TYPE, and ZERO_LEVEL. However, before the code segments that

define these initializations can be discussed, another object must be introduced.

Recall from Figure 1.2 that there are no signal power level sensors at the input

to the receiver units at the channel 1 and channel 2 inputs. Also in chapter 3, the

90

conceptof a subsystem for isolating faults was defined as a group of components between

power sensors. Furthermore, the criteria for isolating a fault to find a subsystem who's

input signal power level was "GOOD" and output signal power level was "gAD." This

situation resulted in a conflict in defining the channel 1 and 2 receiver subsystems.

This conflict was resolved by creating a hypothetical signal power level sensor

for the inputs to the channel 1 and channel 2 receiver subsystems. This sensor would

always report a "GOOD" reading; as it must be assumed that the uplink signal to the

transponder is within its parametric range. This hypothetical sensor was represented by

creating an object called PM_0 and initializing its READINGand LEVEL properties to "GOOD"

and "OK" respectively. Code Segment 5.7 gives these definitions.

Code Segment 5.7: Definition of Hypothetical Signal Power Level Sensor PM_O

(@OBJECT= PM0

(@PROPERTIES =
LEVEL

NAME

READING))

(@SLOT= PM_0.LEVEL

(@INITVAL = "OK')

(@SOURCES = (RunTimeValue) ('OK'))))

(@SLOT = PM_0.NAME

(@INrrvAL= "PM_0")
(@SOURCES= (RunTin_Value) ('PM.0"))))

(@SLOT= PM_0.READING
(@INrI'VAL= "GOOD')
(@SOURCES = (RunTimeValue) ('GOOD'))))

Names of Sensor Objects

The slot definitions for initializing the NAME property of SENSORS objects are given

in Code Segments 5.8.

Code Segment 5.8:
hfitializationof < [SENSORSI >.NAME

91

(@SLOT== BF.RI.NAME

(@[NrrVAL= "_ER_I")
(@SOURCES= (RunTimeValue

(@SLOT= SF--q2.NAME
(@INITVAL= "BER_2")

(@SOURCES= (RunTimcValue

(@SLOT= BER3.NAME

(@iNITVAL= "BER_3")

(@SOURCES = (RunTimeValue

(@SLOT= BER 4.NAME

(@INrrVAL= "BER_4")

(@SOURCES = (RunTimeValue

(@SLOT= BERS.NAME

(@n_rrvAL= "BF__J-)
(@SOURCES= (RunTimeValue

(@SLOT= BF-.R 6.NAME

(@INITVAL= "BER_6")

(@SOURCES = (RunTimeValue

(@SLOT= PMI.NAME

(@_rrVAL= "eMl ")
(@SOURCES = 0iunTimeValue

(@SLOT= PM_2,NAME

(@INrrvAL= "PM_2")

(@SOURCES = CRunlr3meValue

(@SLOT= PM .3.NAME

(@/NITVAL= "PM_3")

(@SOURCES = (RunTimcValue

(@SLOT= PM_4.NAME

(@IN1TVAL= "PM_4")

(@SOURCES = (RunTimcValue

(@SLOT= PM. 5.NAME

(@INrI'VAL = -pM 5o)

(@SOURCES = (RunTimeValue

(@SLOT= PM 6.NAME

(@INrrVAL= "PM 6")

(@SOURCES((RunTimcValue

(@SLOT= PM_7.NAME

(@INITVAL= "PM_7")

(@SOURCES = (RunTimeValue

(@SLOT= PM $.NAME

(@_rrvAL= "PM a-)
(@SOURCES = (Run'/'imeValue

('eF.R 1"))))

('St=R_2"))))

('eER_3"))))

('BER 4 "))))

('BER_5"))))

('BER_6"))))

('PMJ'))))

('PM_2-))))

('PM_3 "))))

('PM 4"))))

('P_5"))))

('PM_))

('PM_7"))))

('PM_8 "))))

Descriptions of Sensor Objects

92

The slot definitions for initializing the descriptions of PWR_SENSORS objects axe

given in Code Segment 5.9. These definitions initialize the 9ESCRIi'TtONproperty of each

object that represents a signal power level sensor in the transponder system.

Code Segment 5.9: Initialization of < [SENSORS[>.DESCRIPTION

(@SLOT= PM_I .DESCRIFFION

(@INITVAL= "Channel 1 Matrix Switch Input Signal Power Level Sensor')

(@SOURCES = (Run_meVelue ('Channel ! Matrix Switch Input Signal Power Level Sane, or'))))

(@S LOT = PM_2.DESCRIFFION

(@INITVAL= "Channel 2 Matrix Switch Input Signal Power Level Sensor')

(@SOURCES = (Run'rln_Value ('Channel 2 Matrix Switch Input Signal Power Level Sensor'))))

(@SLOT= PM_3 .DESCRIPTION

(@INITVAL= "Channel 1 Up-converter Input Signal Power Level Sensor')

(@SOURCES = (RunTimeValue ('Channel I Up-converter Input Signal Power Level Sensor'))

(@SLOT= PM_4.DESCRIPTION

(@/N/TVAL = "Channel 2 Up-converter Input Signal Power Level Sensor')

(@SOURCES = (RunTimeValue ('Channel 2 Up-converter Input Signal Power Level Sensor'))))

(@SLOT= PM_5 .DESCRIFrlON

(@INrrvAL= "channel 1 HPA Input Signal Power Level Sensor')

(@SOURCES= (RunTimeValue ('Channel I HPA Input Signal Power Level Sensor'))

(@SLOT= PM..6 .DESCRIPTION

(@INITVAL= "channel 2 HPA Input Signal Power Level Sensor')

(@SOURCES = (RunTimeValue ('channel 2 HPA Input Signal Power Level Sensor'))

(@S LOT = PM_7.DESCRIFrlON

(@INrFVAL= "channel i HPA Output Signal Power Level Sensor')

(@SOURCES = (RunTimeValue ('Channel 1 HPA Output Signal Power Level Sensor'))

(@SLOT= PMS.DESCRIPTION

(@INITVAL= "Channel 2 HPA Output Signal Power Level Sensor')

(@SOURCES= (RuoTimeValue ('Channel 2 HPA Output Signal Power Level Sensor'))

Types of Sensor Objects

93

The slot definitions for initializing the/Tee property of SENSORS objects are given

in Code Segment 5.10. Each sensor type is initialized at the subclass level for signal

PWR SENSORS and data stream BEn SENSORS.
m

Code Segment 5.10: Initialization of < [BER_ /PWRSENSOR[>.TYPE

(@SLOT-- BER_SENSORS.TYPE
(@INITVALffi "BER')

(@SOURCES -- (RunTimeValue

(@SLOTffi PWR_SENSORS.TYPE
(@INITVALffi "PM')
(@SOURCES = (RunTimcValuc

('BEg'))))

('PM'))))

Retrieval of Remaining Property Values from Database

Only the values of the property NAME are hard-coded into the frame structure of

the SENSORS world. The values for the remainder of the initialized properties are

retrieved from SENSOR.nxp database. This database is included in section A.1 of

Appendix A. Code Segment 5.11 gives the definitions for OS slot actions that retrieve

these values.

Also associated with the slot for SENSORS.NOMINAL is an IC definition. This

definition is not related to the initialization of parameters. It is only included here

because it is attached to the listed slot. This action is required for the ToolBook"

interface and is discussed in that section of this chapter.

Code Segment 5.11: Slot Actions to Retrieve & Initialize Properties of the SENSORS Class

94

(@SLOT= SENSORS.NAME

(@SOURCES = (Retrieve ('SENSOR.nxp') \

(@TYPE= NXPDB; \

@FWRD= FALSE;

@UNKNOWN-- TRUE; \

@PROPS = NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;

@FIELDS*= "NAME', "NOMINAL', "TOLERANCE', "ZERO_LEVEL'; \

@ATOMS= SELF;))))

(@SLOT = SENSORS .NOMINAL

(@SOURCES = (Retrieve

(@CACTIONS --

('SENSOR.nxp') \

(@TYPE= NXPDB;

@FWRD = FALSE; X

@UNKNOWN = TRUE; \

@PROPS = NAME, NOMINAL, TOLERANCE, ZERO_LEVEL;

@FIELDS= "NAME', "NOMINAL', "TOLERANCE', "ZERO_LEVEL'; \

@ATOMS = SELF;))))

(Execute ('RctumNominalData') \

(@AT@MID = SELF;

@STRING --- "@V(@SELF.NOMINAL)';))))

(@SLOT = SENSORS .TOLERANCE

(@SOURCES = (Retrieve ('SENSOR.nxp')

(@TYPE-- NXPDB; X

@FWRD = FALSE; \

@UNKNOWN= TRUE; \

@PROPS*= NAME, NOMINAL, TOLERANCE, ZERO_LEVEL; \

@FIELDS-- "NAME', "NOMINAL', "TOLERANCE', "ZERO LEVEL'; \

@ATOMS-- SELF;))))

(@SLOT-- SENSORS.ZERO LEVEL

(@SOURCES I* (Retrieve ('SENSOR.nxp') \

(@TYPE= NXPDB; \

@FWRD = FALSE; \

@UNKNOWN-- TRUE; \

@PROPS = NAME, NOMINAL, TOLERANCE, ZERO_LEVEL; \

@FIELDS= "NAME', "NOMINAL', "TOLERANCE', "ZERO_LEVEL';

@ATOMS*= SELF;))))

5.2.4 Initialization of FAULT STATES Parameters

There are many parameters of the F,4ULr_STATES hierarchy which have initialized

values. However, these initializations are very specific to the knowledge of the

individual diagnostic modules. They are not defined in the FIDEX kernel knowledge

base. Therefore, they ware discussed when applicable in chapter 8.

5.3 Definition of Blackboard Objects

95

The strength of any frame-based expert system lies in the efficient encoding of

rule knowledge. Its rules should be generic and operate on conditions that are germane

rather than specific to certain instances. A common approach that is used to increase the

efficiency of rule knowledge in frame-based systems is to use a structure called a

blackboard.

By using a blackboard, rules can be written to operate on information posted in

a global structure. The FIDEX system uses this approach. Its rules operate on

properties associated with four objects. The definitions for these objects are given in

Code Segment 5.12.

Code Segment 5.12: Definition of Blackboard Objects

(@OBJECT= CURRENT_COMPONENT

(@PROPERTtF.S = NAME))

(@OBJECT= CURRENT FAULT

(@PROPERTIES= NAME))

(@OBJECT = CURRENT_S ENSOR

(@PROPERTES = NAME))

(@OBJECT= CURRENT_SUBSYSTEM

(@PROPERTIES =

LEVEL_IN

LEVEL_OUT
NAME

READING IN

READING OUT
SENSOR IN

m

SENSOR OUT)

5.4 Definition of Objects/Properties for Rule Hypotheses

This section, and the last section, are leading to a discussion of object/class

dynamics and slot actions that begins in section 5.5. Several of these dynamics use rule

96

knowledge. NEXPERT" requires that all properties and objects used in a rule, whether

as conditions or hypotheses, to be defined before the definition of the rule. To facilitate

the discussion in the following section, all such definitions have been grouped together

in Code Segment 5.13. The meanings of each object and property are discussed when

appropriate in section 5.5.

Code Segment 5.13: Definition of Objects/Properties for Rule Hypotheses

(@PROPERTY = BAD @TYPE = Boolean;)

(@PROPERTY= Bad Sensor,, @TYPE = Boolean;)

(@PROPERTY-- GOOD @TYPE= Boolean;)

(@PROPERTY = HIGH @TYPE= Boolean;)

(@PROPERTY= LOW @TYPE= Boolean;)

(@PROPERTY= Nominal_Sensor_Data @TYPE=Boolean;)

(@PROPERTY = OK @TYPE = Boolean;)

(@PROPERTY = ZERO @TYPE = Boolean;)

(@OBJECT= Evaluate_Certainty_Factors

(@PROPERTIES= Value @TYPE=Boolean;)

(@OBJECT = Model_Matrix_Switch_SubSystem

(@PROPERTIES= Value @TYPE=Boolean;)

(@OBJF..CT =, Return_BAD_Sensors

(@PROPERTIES = Value @TYPE= Boolean;)

(@OBJECT= Retum_Nominal_sensor..Data

(@PROPERTIES= Valu_ @TYPE=Boolean;)

(@OBJECT = Sensor Level_Description

(@PROPERTIES =
HIGH

LOW

OK

ZERO))

{@OBJECT= Sensor..Reading_Descrlption

(@PROPERTIES =

BAD

GOOD))

(@OBJECT=. TBK Reque_.

(@PROPERTIES =

Bad_Sensors

Nominal_Sensor.Data

5.5 Object/Class Dynamics and Slot Actions

97

The values of many properties introduced in chapter 4 represent dynamic

quantities. Such properties are those used to simulate the propagation of a signal through

the transponder system, evaluate qualitative descriptions of parameter values, and drive

the inference strategies of the expert system.

5.5.1 Dynamics and Slot Actions of the COMPONENTS Class

The properties associated with the COMPONENTSclass were introduced in section

4.1 and defined in Code Segment 4.1. Several of these simulate the propagation of the

communication signal through the transponder system. Specifically, these properties are

GAIN, POWER IN, POWER_OUT, and their MODEL_ counterparts.

Propagation of Signal Power Levels Through Components

The slot definitions which simulate the propagation of signal power levels through

the components of the transponder system are given in Code Segment 5.14. The three

slots used in this simulation are <ICOMPONENTSl>.GAIN, POWER_IN, and POWER_OUT.

These are class level slot definitions which are inherited by all component objects in the

COMPONENTS hierarchy.

The propagation of signal power levels is simulated using two different techniques

for driving slot actions. The first and most useful approach is called data-driven. In this

approach the changing of data at the input to a component is used to drive the evaluation

of other component object property values.

Code Segment 5.14: Propagation of Signal Power Levels Through Components

98

(@SLOT= COMPONENTS.GAIN

(@SOURCES = (Do (S ELF.POWER OUT-SELF.POWER_IN)

(@CAC'rlONS I* (Do (SELF.POWER_IN °r SELF,GAIN)

(SELF.GAIN)))

(SELF.POWER_OUT))))

(@SLOT ffi COMPONENTS .POWER_IN

(@SOURCES = (Do 0SELF.COMPONENT_IN\.POWER OLW) (SELF.POWER IN)))

(@CACTIONS ** (Do (SELF. POWER_IN or SELF.GAIN) (SELF. POWER_OUT))))

(@SLOT ffi COMPONENTS .POWER_OUT

(@SOURCES = (Do (SELF.POWER_IN orSELF.G AIN) (SELF.POWER_OUT)))

(@CACTIONS ffi (Do (SELF.POWER_OUT) (\SELF.COM PONENT_OUT'_.POWER_IN))))

Recall from section 4.1 that the signal power level at the input to a component

is represented by the property eOWen_tN. Whenever the value of this property changes,

IC actions, (@CAC'rtONS=...), are taken. The new value of POWER_INis added with the

current value of the component's GAINproperty to calculate a new value for the signal

power level at the output to a component. This new value is placed in the property that

represents this quantity, POWER_OUT.

Changing this output power level again stimulates another IC action to be taken.

Whenever the value of a component's POWER_OUT property changes, it posts this new

value as the signal power level at the input to the next component in the transponder's

signal path. (The negligible attenuation of component couplings are disregarded.) To

do this, it must evaluate the string value of its COMPONENT_OUT property; which was

initialized to the object name of the component object at its output in section 5.2.1.

Posting this new signal power level as the input power level of the next

component stimulates the same sequence of IC actions in the properties of that component

object. In this manner, the signal power levels through out the transponder system are

simulated in the objects which represent the transponder components.

The propagation of signal power levels is also simulated using another technique

for driving slot actions. This approach is called source-driven. It is useful when values

99

of parametersarenot known andmustbe calculated. In this approachthepursuit of a

valuefor oneparameteris usedto drive the evaluationof other property values.

Whenevervaluesfor a componentobject's GAIN or POWER OUT are required but

unknown, OS actions, (@SOURCES=...), provide the means for calculating them from other

properties. Should the value of a component object's pOWF.R_tN be required but

unknown, OS actions provide the means for it to look to the output signal power level

of its input component, COMPONENT_IN. Again, when these values are obtained, changed

from unknown, their IC actions propagate the new values.

Propagation of Modeled Signal Power Levels Through Components

Also recall from section 4.1 that a primitive model-based reasoning overhead is

included in the object dynamics of the FIDEX system. These dynamics are effected

through the MODEl._ prefixed properties listed in Code Segment 4.1. The propagation of

these modeled signal power levels through components is implemented in the same

manner as those discussed with Code Segment 5.14. The definitions for these slot

actions are given in Code Segment 5.15.

Code Segment 5.15: Propagation of Modeled Signal Power Levels Through Components

100

(@SLOT= COMPONENTS .MODELGAIN

(@SOURCES,, (Do (SELF.MODEL_POWER OUT@SELF.MODEL_POWER_IN) \

(SELF,MODELGAIN)))

(@CACTIONS = (Do (SELF.MODEL POWER IN +SELF.MODEL GAIN)

(SELF.MODELPOWEROUT))))

(@SLOT - COMPONENTS .MODEL_POWER_IN

(@SOURCES = (Do (XSELF.COMPONENT_IN\.MODEL_POWER_OUT)

(S ELF .MOD EL_POWER_IN_))

(@CACTIONS = (Do (SELF.MODEL_POWER_IN + SELF.MODEL_G AIN)

(SELF.MODEL_POWER_OUT))))

(@SLOT= COMPONENTS .MODELPOWER_OUT

(@SOURCES-= (Do (S ELF.MODEL_POWER_i_ + SELF.MODEL_GAIN)

(SELF.MODEL_POWER_OUT)))

(@CACTIONS = (Do (SELF.MODEL_POWER OUT)

GSELF.COMPONENT_OUTX.MODEL_POWER_IN))

Propagation of Signal Power Levels Through MultiPort Components

As discussed in section 4.1, there are a number of multiple port components

within the transponder. The parameters which represent signal quantities at these

additional ports were represented in those component objects by the properties suffixed

by _2 in Code Segment 4.3. However, the existence of multiple ports does not

complicate the simulated propagation the transponder signal. The techniques are simply

expanded as shown in Code Segment 5.16.

This segment does not give a complete listing. The scope of such a listing would

be of great length and very redundant. Code Segment 5.16 simply provides two

examples of how the gain of the second channel through the matrix switch is simulated.

For a complete listing, refer to Appendix A.

101

Code Segment 5,16: Propagation of Signal Power Levels Through Multiple Port Components

> > * INCOMPLETE * < <

(@SLOT= SWITCHES.GAIN_2

(@SOURCES-- (Do (SELF .POWER_OUT_2-$ ELF. POWER_IN_2) (SELF.GAIN 2)))

(@CACTIONS = (Do (SELF. POWER IN_2 + SELF.GAIN_2) (SELF.POWER OUT_2))))

(@SLOT = SWITCHES.MODEL_GAIN_2

(@SOURCES = (Do (SELF.MODEL_POWER OUT_2-SELF.MODEL POWER IN_2)\
(SELF.MODEL_GAIN_2)))

(@CACTIONS =, (Do (SELF.MODEL_POWER_IN_2 + SELF.MODEL_GAIN 2)

(SELF .MODEL_POWER OUT_2))))

5.5.2 Dynamics and Slot Actions of the SUBSYSTEMS Class

The properties associated with the SUSSYSTEMS class were introduced in section

4.2 and defined in Code Segment 4.6. Several of these are used to represent qualitative

descriptions of signal power sensor READINGS and LEVELS throughout the transponder

system. Another property is responsible for loading and initializing the

DIAGNOSTIC_MODULE associated with the specific subsystems. And finally, recall that the

various channels through matrix switch subsystem were modeled as a series of dynamic

objects. This subsection discusses these dynamics of the SUBSYSTEMS class.

Dynamic Modeling of the Matrix Switch SubSystem

Table 1.2 listed four permutations of signal paths through the matrix switch.

Correspondingly, there are four signal paths through the matrix switch subsystem. Each

of these paths was represented by an object defined in Code Segments 4.9a and 4.9b.

However at any given time, only two of these paths are propagating a signal through the

102

transponder. Which two of thosefour is determinedby theconfigurationof the matrix

switch component.

To representthis configurationa string property called CONFtG was attached to

the object that represents the matrix switch component, MSW1TCH. This property is set

to a character that represents a particular configuration of the switch. Code Segment

5.17 gives the definition for a slot which is used to obtain a value for this property.

Code Segment 5.17: Sources for Matrix Switch Configuration

(@SLOT: MSWlTCH.CONFIG

(@SOURCES= (Execute ('RequestMatrixSwitchConfig "))))

The OS action of this slot execute an external handler that is associated with the

ToolBook" Graphical User Interface (GUI). This handler ascertains a value for the

switch configuration and place it in the CONFIG property of the matrix switch.

In the current phase of development of the transponder system, only two

configurations of the matrix switch are possible. These are represented by either ",4" or

"B." When the ToolBook" handler sets the configuration property value, a hypothesis

called Model_Matrix_Switch_Subsystem is placed on the agenda through a process called

gating.

This hypothesis is supported by the two rules defined in Code Segment 5.18.

Based on the value of the MSWlTCH.CONFIG property, only one of these rules may fire.

Each rule provides actions, (@RHS=...), that dynamically attaches two objects to the

SVSSrSTEMS class. The single rule that fires attaches objects which represent active signal

paths through the matrix switch as subsystems of the transponder. As such, these objects

inherit all property values and slot actions associated with that class.

Code Segment 5.18: Rules That Model the Matrix Switch Signal Paths as SUBSYSTEMS

103

(@RULE= RULE 012 MODELMATRIX_SWITCH

(@LHS-- (Is (MSWITCH.CONFIG) ('B')))

(@HYPOs ModeiMatrix..SwitchSubSystem)

(@RHS= (CreateObject 0vISWITCH_CHI2) (ISUBSYSTEMS{))

(CreateObject (MSWITCHCH21) (ISUBSYSTEMSl))))

(@RULE= RULE 011 MODEL_MATRIX_SWITCH

(@LHS-- (Is (MSWITCH.CONFIG) ('A')))

(@HYPO= Model_Matrix_Switch SubSyatem)

(@RHS m (CreateObject 0vlSWITCH_CHII) ([SUBSYSTEMSD)

(CreateObject (MSWITCH CH22) (]SUBSYSTEMSI))))

Qualitative Descriptions of Input/Output Sensor Quantities

The knowledge for isolating faults to the subsystems of the transponder is

contained in another knowledge base, called ISOLATE.tkb. Furthermore, the knowledge

bases required to diagnose faults within isolated subsystems are contained in still other

files. Each of these modules uses information provided by several properties of the

SUBSYSTEMS class. Therefore, the kernel knowledge base must provide a means for

ascertaining all required information.

Isolation requires values for the _.ADINo reported by the sensors at the input and

output of each subsystem. As discussed in section 4.2, these strings are to be placed in

the READING_IN and READING_OUT properties of a subsystem. Diagnostics requires values

for the LEVELreported by the sensors at the input and output of each subsystem. As also

discussed in section 4.2, these strings are to be placed in the LEVEt._tN and LEVFd._OUT

properties of a subsystem. The slot actions listed in Code Segment 5.19 are defined at

the SUBSYSTEMS class level and are used to obtain values for these properties from the

SeNSOnS hierarchy.

Code Segment 5.19: Qualitative Descriptions for SUBSYSTEMS Input/Output Quantities

104

(@SLOT= SUBSYSTEMS.LEVEL IN

(@SOURCES= (Do GS-ELF.SENSOR_IN\.LEVEL) (SELF.LEVEL_IN)))

(@SLOT= SUBSYSTEMS.LEVEL_OUT

(@SOURCES = (Do GSELF.SENSOR_OUT_.LEVEL)

(@SLOT= SUBSYSTEMS .READING IN

(@SOURCES = 030 (LS ELF .S ENSOR_IN\ .READING)

(@SLOT = SUBSYSTEMS .READING OUT

(@SOURCES = (Do GSELF.SENSOR_OUT_.READING)

(SELF.LEVEL_OUT))))

(SELF.READING_IN))))

(SELF.READING_OUT))))

Recall from section 5.2.2 that names of the objects that represent the sensors at

a subsystems input and output are initialized within the properties SENSOR.iN and

SENSOR OUT. Each slot action shown in Code Segment 5.19 provides the OS actions to

evaluate these sensor names and acquire the qualitative descriptions as required.

Dynamics of an Isolated Subsystem Object

The job of the isolation module is to set the tSO_77rD property of the objects that

represents the subsystem that has been isolated. The knowledge required for this is

discussed later in chapter 7. For now, the dynamics which occur when this property is

set will be discussed.

Code Segment 5.20 defines a class level slot for the ISO_TED property of

subsystems. During initialization, and at run time, the value of this property is set to

FALSE for all objects in the SUBSYSTEMS class. The run time value directive in the OS

actions assures that this is .the case for the dynamically attached object that were

discussed earlier.

Code Segment 5.20: Dynamics of <JSUBSYSTEMSI >.ISOLATED

105

(@SLOT= SUBSYSTEMS.ISOLATED

(@[Nrrv/LL= FXLSE)
(@SOURCES= (RunThncValuc (FALSE)))

(@CACTIONS == 0Execute ('Rcturnlsolation')
(@ATOMID = SELF; @STRING -- "@V(@SELF.NAME)" ;))))

When the isolation module sets the ISOLATED property of a subsystem object to

_t_E, a IC action is initiated. This action executes an external handler that is defined

within the ToolBook" GUI. Two parameters are passed to this handler. The first is the

name of the object atom, (@ATOMID), for the isolated subsystem. The key word SELF

is used to pass the name of the subsystem object which triggered this IC action. Also

passed is the value of the subsystem's NAME property. Both of these parameters are used

within the ToolBook" GUI.

When the GUI has finished informing the user of the results from the isolation

phase, the handler for Returnlsolation sets the DIAGNOSTIC_MODULE property of the

subsystem object that called it. This is why the atom ID was passed as a parameter.

Code Segment 5.21 lists the definitions for slots associated with this property for each

object in the SUBSYSTEMS class. It is the IC actions associated with these slots which

effect the chaining to the specialized diagnostic modules for the specific subsystems of

the transponder.

Code Segment 5.21: Chaining to Diagnostic Modules

106

(@SLOT = CH ! AMP.DIAG NOSTIC_MODULE

(@INFrVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS = (LoadKB ('CH I AMP.tkb') (@LEVEL_ ENABLE;))

(@SLOT= CHI RCVR.DIAGNOSTICMODULE

(@INrrVAL= FALSE)

(@SOURCES-- 0RunTimeValue (FALSE)))

(@CACTIONS= (LoadKB ('CHIRCVR.tkb') (@LEVEL=ENABLE;))

(@SLOT = CH 1UPX.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS = (LoadKB ('CHIUPX.tkb') (@LEVEL=ENABLE;))

(@SLOT= CH2AMP.DIAGNOSTIC MODULE

(@INrrVAL = FALSE)

(@SOURCES = (RunTimeValuc (FALSE)))

(@CACTIONS= (LoadKB ('CH2AMP.tkb °) (@LEVEL=ENABLE;))

(@SLOT= CH2RCVR.DIAGNOSTIC MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS= (LoadKB ('CH2RCVR.tkb') (@LEVEL=ENABLE;))

(@SLOT= CH2UPX.DIAGNOSTIC_MODULE

(@[NITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS = (LoadKB (*CH2UPX.tkb') (@LEVEL=ENABLE;))

(@SLOT= MSWI'rCH CH 11 .DIAGNOSTIC MODULE

(@[Nn'VAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS= (LoadKB ('MSWITCH.tkb') (@LEVEL=ENABLE;))

(@S LOT = MSWITCH_CH 12.DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES= (RunTimeValue (FALSE)))

(@CACTIONS= (LoadKB ('MSWITCH.tkb') (@LEVEL=ENABLE;))

(@SLOT-- MSWITCH_CH21 .DIAGNOSTIC_MODULE

(@INITVAL= FALSE)

(@SOURCES = (RunTimeValue (FALSE)))

(@CACTIONS = ('l..oadKB ('MSWITCH.tkb') (@LEVEL= ENABLE;))

(@SLOT= MSWITCH_CH22.DIAGNOSTIC_MODULE

(@n_rrVAL= FALSE)

(@SOURCES = (Run'l'imeValue (FALSE)))

(@CACTIONS =, (LoadKB ('MSW1TCH.tkb') (@LEVEL= ENABLE;))

107

As for the mOLaTED property, the value of each object's DIAGNOSTIC_MODULE

property is set to FALSE both during initialization and at run time. When the GUI handler

sets this value to fRyE an IC action is stimulated. This action loads the specialized

diagnostic knowledge base associated with the isolated subsystem object. As there is one

diagnostic knowledge base for each subsystem, a slot must be defined at the object level

for each subsystem object.

5.5.3 Dynamics and Slot Actions of the SENSORS Class

The properties associated with the SENSORS class were introduced in section 4.3

and defined in Code Segment 4.10. Several of these are used to ascertain qualitative

descriptions of the data reported by the sensors of the transponder system. Specifically,

these properties are DATA, ERROR, LEVEL, and READING.

Slot Actions for Qualitative Descriptions of Sensor Quantities

The slot definitions which ascertain qualitative descriptions of the data reported

by sensor components are given in Code Segment 5.22. The values for sensor DATA are

provided through the GUI. As these values change, IC actions defined at the class level

drive the evaluation of qualitative discriptions for the sensor's nE_,tDING and LEVEL. The

first three actions associated with DATA reset the values of a sensors ERROR, READING, and

LEVEL to unknown values. This is done to force their re-evaluation when the next three

actions are taken. Assigning the value of a slot to itself, as done in the last three IC

actions associated with DaTa, is an efficient method for forcing the evaluation of a slot.

Neuron Data, Inc., the publishers of NEXPERT', recommends this technique for

situations such as this one.

108

Code Segment 5.22: Slot Actions for Qualitative Descriptions of Sensor Quantities

(@SLOT = SENSORS .DATA

(@CACTIONS = (Reset (SELF.ERROR))

(Reset (SELF.READING))

(Reset (SELF.LEVEL))

(Do (SELF.ERROR)

(Do (SELF.READING)

(Do (SELF.LEVEL)

(SELF.ERROR))

(SELF.READING))

(SELF,LEVEL))))

(@SLOT= SENSORS.ERROR .

(@SOURCES = (Do (SELF.DATA-SELF.NOMINAL) _ELF.ERROR))))

(@SLOT= SENSORS.READING

(@SOURCES= (Do (SELF.NAM_

(@CACTIONS =

(CURRENT_SENSOR.NAME))

(Reset (Sensor Reading_Description.BAD))

(Do (Sensor_Reading_Desc ription.BAD)

(Sensor_Reading_Description.BAD))

(Reset (Sensor_Reading_Des¢ ription.GOOD))

(Do (Sensor_Reading_Desc ription.GooD)

(Sensor_Reading_Desc ription.GooD)))

(Execute ('RetumSensorReading')

(@ATOMID = SELF;@STRING = "@V(@SELF.READING)';)))

(@SLOT= SENSORS .LEVEL

(@soURcES-- (Do
(Reset

(Do

(SELF.NAME)

(Sensor Level_Description .ZERO))

(SensorLevei_Descripfion.ZERO)

(Sensor Level_Description.ZERO))

(Reset (Sensor_Level_Description.LOW))

(Do (Sensor_Level_Description.LOW)

(Sensor_LevelDescription.LOW))

(Reset (Sensor.Level_Description.HIGH))

(Do (Sensor.Level_Description.HIGH)

(Sensor_LevelDescription .HIGH))

(Reset (Sensor_Level_Description.OK))

(Do (Sensor.Level_Description.OK)

(Se nsorLevel_Descrlption.OK)))

(Execute ('RetumSensorLevel')

(@ ATOMID = SELF; @STRING -- "@V(@SELF.LEVEL)';))
(@CACTIONS =

URRENTSENSOR.NAM)

))

The value of the current sensors's error, SELF.EggOR, is unknown at this time.

When its value is evaluated, the OS actions associated with the class level slot definition

calculate the difference between the current and nominal sensor data values as the signed

109

error in the sensor reading. This value is used in determining values for the reading and

level. It is discussed shortly.

The sources for READING and LEVEL perform very similar functions. When values

for each of these are pursued, the OS actions do the following. First, the value for NaME

of the blackboard object CURRENT_SENSOR is set to the name of the current sensor object.

Then a sequence of slots are reset and then forced to be evaluated. These slots represent

the hypotheses of rules which ascribe the qualitative descriptions to the sensor quantifies

in question. This list is pursued sequentially until a value is set. Once a value is set,

the OS actions are terminated and the remainder of the directive ignored. The rules

which ascribe qualitative descriptions to sensor readings and levels are defined in Code

Segments 5.23 and 5.24.

Also defined with the slots for SENSORS.READING and .LEVEL are IC actions which

fire when the sources establish their values. These actions communicate the new

qualitative descriptions to an external handler that is defined in the ToolBook" GUI.

Code Segment 5,23: Rules to Ascribe Qualitative Descriptions to Sensor Levels

110

(@RULE= RULE 003 QUALIFICATION_OF_HIGH_SENSORLEVELS

(@LHS= (> (_CURRENT_SENSOR.NAMELERROR) (0)))

(@HYPO= Sensor_Level_Description.HIGH)

(@RI-IS= (Let GCURRENT_SENSOR.NAME\.LEVEL) ('HIGH'))

(@RULE= RULE 004 .QUALIFICATION OF LOW_SENSOR_LEVELS

(@LHS= (< (_CURRENT SENSOR.NAME\.ERROR) (0)))

(@HYPO = Sensor_Level_Description.LOW)

(@RHS= (Let (XCURRENT_SENSOR.NAME\.LEVEL) ('LOW'))

(@RULE= RULE 005 .QUALIFICATION OF OK SENSOR_LEVELS

(@LHS= (< = (ABS6CURRENT_SENSOR.NAME\.ERROR)"

\CURRENT_S EN SOR.NAME\.TOLERANCE) (0)))

(@HYPO = Sensor_Level_Description.OK)

(@RHS= (Let GCURRENT_SENSOR.NAME\.LEVEL) ('OK'))))

))

))

(@RULE= RULE 006 QUALIFICATION OF ZERO_SENSOR_LEVELS

(@LHS= (< = (XCURRENT SENSOR.NAME\.DATA- \

\CURRENT SENSOR.NAME\.ZERO_LEVEL) (0)))

(@HYPO = Sensor_Level_Desc rlption.ZERO)

(@RHS= (Let (_CURRENT_SENSOR.NAME\.LEVEL) ('ZERO'))))

Code Segment 5.24: Rules to Ascribe Qualitative Descriptions to Sensor Readings

(@RULE= RULE 001 .QUALIFICATION OF BAD_SENSORREADINGS

(@LHS= (> (ABS_CURRENT_S ENSOR.NAME\.ERROR)-

_CURRENT_S ENSOR. NAM E\.TOLERANCE) ((3))

(@HYPO= SensorReadlng De scription.BAD)

(@RHS = (Let (_CURRENT_SEN SOR.N AME\.READING) ('BAD'))

(CreateObject (XCURRENT_SENSOR.NAME\)

(Let GCURRENT_S EN SOR.NAM E\. EV ALU ATED)

\

)

(l BAD_SENSORS l))

(TRUE))))

(@RULE= RULE 002 QUALIFICATION OF GOOD_SENSOR_READINGS

(@LHS = (< = (ABS('_CURRENT_SENSOR.NAMELERROR)-

\CURRENT SENSOR. NAMELTOLERANCE) (0)))

(@HYPO = Sensor.Reading_Description.GOOD)

(@RHS = (Let (XCURRENT_SENSOR.NAME\.READING) ('GOOD'))

(Let (XCURRENT_SENSOR.NAME\.EVALUATED) (TRUE))))

5.5.4 Implementation of MYCIN Technique and Certainty Analysis

The MYCIN technique for the incremental accumulation of evidence and its use

in certainty analysis was first introduced in sections 3.3.2 and 3.3.3. Then, the

representation of properties for certainty analysis were given in Code Segment 4.14.

This section discusses the implementation of the

CERTAINTY ANALYS1S class level.

111

MYCIN technique at the

The slot definitions for the properties involved in certainty analysis are given in

Code Segment 5.25. Supporting rules for ascribing qualitative descriptions to

CONFIDENCE in fault state hypothesis are listed in Code Segment 5.26.

Code Segment 5.25: certainty analysis

112

(@SLOT = CERTA INTY_ANA LYSIS .A B

(@INITVAL=. 0.0)

(@SOURCES = ('RunTimeVtlu¢ (0.0)))

(@CACTIONS = (1)o ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD))

(SELF.CF))))

(@SLOT = CERTAINTY ANALYSIS.AD

(@INITVAL =_" 0.0)

(@SOURCES = (RunTimeValu¢ (0.0)))

(@CACTIONS ffi (Do ((SELF J_B-SELF.AD)/MIN(SELF.A B,SELF .AD))

(SELF.CID)))

(@SLOT= CERTAINTY_ANALYSIS.CF
(@INITVAL= 0.0)

(@SOURCES = (RunTimeValue (0.0)))

(@CACTIONS = (Do " (SELF.NAME) (CURRENT_FAULT.NAME))

(Reset (Evaluatc_Ccminty_Factors))

(Do (EvaluateCertainty_Factors) \

(Evaluate_Certainry_Factots))))

(@SLOT= CERTA INTY_ANA LYS IS. MB

(@INITVAL = 0.0)

(@SOURCES = (RunTimcValu¢ (0.0)))

(@CACTIONS = (Do (SELF.AB + SELF.MB *(I-SELF.AB))

(P.e_ (SELF.MB))))

• (SELF.AB))

(@SLOT= CERTA INTY_ANA LYSIS .MD

(@INITVAL = 0.0)

(@SOURCES = _tmTimeValuc (0.09))

(@CACTIONS = (Do (SELF.AD + SELF.MD*(I-SELF.AD))

O_e_ct (SELF.MD))))

(SELF.AD))

Code Segment 5.26: Rules to Ascribe Qualitative Descriptions to Fault State

Confidence Factors

113

(@RULE= RULE 029 QUALIFICATION_OF_CONFIDENCE__RFJECTED

(@LHS = (< = (%CURRENT FAULT.NAME\.CF) (-0.9))

(@HYPO -- Evaluatc_CcJ_finty_Faclo_)

(@R.HS = (Let (XCURRENT_FAULT.NAMELCONFIDENCE)
(L_ (XCURRENT_FA ULT .NA MEL VERIFIED)

)

('RF_2ECrED'))

(FALSE)))

(@RULE = RULE 02g .QUALIFICATION_OF_CONFIDENCEVERY_IMPROBABLE

(@LHS= (< = 6CURRENT_FAULT.NAMEX.CI9 (-0.75))

(> (XCURREIqT_FA ULT.NA ME\. CF) (-0.9))

(@HYPO = Evaluat¢ Ccrtaiaty_Factor,)
(@RHS = 0¢t (_CURRENT_FA ULT.NA ME\ .CONFIDENCE)

('VERY_IMPROBABLE'))))

(@RULE= RULE_027 QUALIFICATION OF CONFIDENCE IMPROBABLE
(@LHS= (<= 6CURRENT_FA ULT .NA ME\.CF) (-0.5))

(> 6CURRENT FAULT.NAME\ ,CF) (-0.75)))

(@HYPO = Evaluate Cc_fia_,_Factors)

(@RHS = (Let 6CURRENT_FAULT.NAMELCONFIDENCE) ('IMPROBABLE'))))

(@RULE= RULE 026 .QUALIFICATION_OF_CONFIDENCEUNLIKELY

(@LHS= (<= (XCURRENT_FA ULT .NA ME\ .CF) (-0.25))

(> (XCURRF2qT_FAULT.NAME\.CF)

(@HYPO = Evaluate_Certainty_Factors)

(@RHS = (Let 6CURRENT_FA ULT .NA ME\.CONFID ENCE)

(.0.5)))

('UNLIKELY'))

(@RULE= RULE 025 .QUALIFICATION_OF CONFIDENCE_ UNKNOWN

(@LHS = (> 6CURRENT_FA ULT.NAMEX .CF) (-0.25))

(< (\CURRENT FA ULT.NAME\ .CF)

(@HYPO = Evaluate Certainty_Factors)

(@RHS= (Let (\CURRENT_FA ULT .NA ME\ .CONFIDENCE)

(0.25)))

('UNKNOWN'))

(@RULE= RULE 024 QUALIFICATION OF_CONFIDENCE POSSIBLE

(@LHS= (>= (\CURRENT FAULT .NA ME\. CF) (0.25))

(< GCURRENT_FAULT.NAME\.CE)

(@HYPO = Evalua_ Certainty_Factors)

(@RHS= CLOt 0CURRENT_FA ULT.NA ME\ .CONFIDENCE)

(0.5)))

('POSSIBLE'))

(@RULE= RULE_023 QUALIFICAT1ON_OF_CONFIDI_CE LIKELY

(@LHS= (> = 6CURRENT_FAULT.NAME\,CF) (0.5))
(< 6CURRENT_FAULT.NAME\.CF)

(@HYPO = Evaluat©_Ccrtainty_Fac tots)

(@R/IS= (124 6CURRENT_FA ULT .NAMEX.CONFID ENCE)

(0.75)))

('LIKELY'))

(@RULE= RULE 022 .QUALIFICATION OF_CONFIDENCE. PROBABLE

(@LHS= (> = 6CURRENT_FAULT.NAMEX.CF) (0.75))

(< (XCURRENT_FA ULT.NAME\.CF)

(@HYPO = Evaluatc_CeJ_ainty_FactoPs)

(@RHS = (L_ (%CURRENT_FA ULT .NA MELCONFIDENCE)

(0.9)))

('PROBABLE'))

(@RULE= RULE 021 .QUALIFICATION_OF_CONFIDENCEESTABLISHED

(@LHS,, (> = 6CURREICT_FAULT.NAMELCF) (0.9)))

(@HYPO = Evaluate_Certainty_Factors)

(@RHS = O..=t (\CURRF, NT_FA ULT .NA ME'_.CONFID ENCE) ('ESTABLISHED'))

(\CURRENT FA ULT .NAME_,.V ERIFIED) (TRUE)))

))

5.5.5 Dynamics of Interaction With ToolBook" Interface

114

There are three properties of the SENSORS class that are used to communicate

information to the ToolBook" GUI. These properties are nTNLEVEL, RTN_NOMINAL, and

RTN_RE_4D_N6. They were introduced in section 4.3 and defined in Code Segment 4.10,

but their descussion was delayed to now.

Their operation is simple. Whenever the GUI needs the current value of a

sensors LEVEL, NOMINAL, or READING property, it can toggle the values of these slots

between TRUE and FALSE. The IC actions given in Code Segment 5.27 are then

stimulated to execute externally defined handlers and return the desired quantity.

Code Segment 5.27: Definition of GUI Interactive Slots

(@SLOT= SENSORS .RTN_LEVEL.

(@CACTIONS = (Execute ('RetumSensorLevel')

(@AT@MID = SELF;@STRING = "@V(@SELF.LEVEL)';))

\

))

(@SLOT-- SENSORS.RTN_NOMINAL

(@CACT1ONS = (Exect/te ('ReturnNominalData') \

(@AT@MID = S ELF;@STRING = "@V(@SELF.NOMINAL)" ;))))

(@SLOT--- SENSORS.RTN_READING

(@CACTIONS = (Execute ("ReturnSensorReading ") \

(@AT@MID = SELF;@STRING = "@V(@SELF.READING)';))))

A similar slot was defined earlier in Code Segment 5.11 for the IC actions of

SENSORS.NOMINAL. It is a redundancy of the SENSORS.RTN__NOMINAL slot in that it

communicates the value of the current sensor objects nominal data to the GUI.

However, this redundancy added efficiency in speed and was included with the slot

definition for the NOMINAL property slot.

The final code segment discussed in this chapter defines two rules which are

required for the GUI. RU__901 is used to retrieve and return nominal sensor data to the

115

GUI. RULE_902 is used to a list of all sensors who's readings were described as "BAD."

Each of these use the IC actions defined in Code Segment 5.27 by toggling sensor

property values.

Code Segment 5.28: Rules Required by ToolBook" Interface

(@RULE= RULE 902 RETURN LIST OF_BAD_SENSORS TO ToolBo_

(@LHS = (Yes (TBK_R eque.*t. Bad_Sensors)))

(_HYPO= Return BAD Scmao_)

(@RHS = (Let ((]BAD_SENSORS _).RTN_READINO) (TRUE))

(Strategy (_ACTlONSON = FALSE;))

(Reset ({ IBAD_SENSORS] }.RTN_READINGO)

(Stnttegy (_K2A C-'q'IONSON = TRUE;))

(Execute (" IMdSetasorR r.adi_ s Returned ")))

(@RULE= RULE_901 RETRIEVE_SENSOR PARAMETERS_FROM SENSOR DATABASE

AND_RE'IXIRN_NOMINAL DATA TO ToolBook

(@LHS= (Yea (TBK_Request.Nominal Seasor DJtaD

(Retrieve ('SENSOR.taxp')

(@TYPE = NXPDB;@FWRD ==FALSE;@UNKNOWN =-TRUE;@PROPS = NAME,

NOMINA L,TOLERANCE, ZERO_LEV EL;_ FIELDS = "NAME',

"NOMINAL*, "TOLERANCE",'ZERO_LEVEL*;@ATOMS = <] SENSORS] > ;))

(@HYPO = Return Nominal_Seatoc_Data)
(@RHS= 03o (< ISENSORSl > .NOMINAL) (<]SENSORSt > .NOMINAL))))

CHAPTER VI

FAULT DETECTION MODULE KNOWLEDGE BASE

This chapter discusses the rule module for fault detection knowledge. Recall from

chapter 1 that each task in the diagnostic process was separated into an individual

knowledge base. The knowledge for the detection of faults in the ACTS transponder

system is contained in the DETECT.tkb knowledge base. A complete listing of that

module can be found in Appendix B.

In section 1.3, the purpose of the fault detection task was defined as to detect any

misbehavior in the performance of the ACTS transponder system. It was explained how

this task involved the analysis of current sensor information in the form of qualitative

descriptions for sensor readings. The knowledge required to detect a fault was then

summarized as establishing a "BAD" reading on any sensor in the transponder.

The knowledge required to detect a fault, or determine that the transponder

system is functioning properly is defined in Code Segment 6.1. First, the objects which

represent the hypotheses of rules are defined. Then the two rules of the fault detection

module are defined.

R_E 101 represents the knowledge required to detect a fault. It first checks to

see if the ToolBook Graphical User Interface (GUI) has requested fault detection. Then

it scans the READING properties of all objects in the SENSORS class. It will fire if it finds

any sensors who's reading is "BAD." Then, it executes an externally defined handler

which communicates this result to the GUI.

116

117

Code Segment 6.1: Rules for the Detection of a Fault

(@VERSION -- 020)

(@OBJECT= A_Fault_Has_Been_D©tected

(@PROPERTIES= Value @TYPE=Boolean;))

(@OBJECT: AFault Has Not Been_Detected

(@PROPERTIES= Value @TYPE=Boolean;))

(@OBJECT = Transponder_Functlonlng_Properly

(@PROPERTIE.S= Value @TYPE=Boolean;))

(@RULE-- RULE I01 DETECTION OF A FAULT

(@LHS= (Yes (TBK Request.Detection))

(is (< ISENSORS[>.READING) ('BAD'))

(@HYPO= AFault Has Been_Detected)

(@RI'[S= (Execute ('FaultDetected'))))

(@RULE=: RULE 102 NON_DETECTION OF A FAULT

(@LHS= (Yes (TBK_Request.Detectlon))

Os ((ISENSORSI}.READING) ('GOOD')

(@HYPO= A_Fault Has Not Been Detected)

(@RHS= (Execute ('NoFauhDetected'))))

))

When NEXPERT" sends the message "FaultDetected" to the ToolBook" GUI, a

handler defined there takes control from the NEXPERT" application and the inference

process is suspended. The user is informed that a fault has been detected within the

transponder system and why this conclusion was reached. The user then has two options.

He may either choose to continue the diagnostic process or stop and enter new data.

If the user decides not to pursue the rest of the diagnostic process, the fault

detection module is unloaded. The user is then returned to the sensor data input mode

of the GUI. Should the user choose to continue with the rest of the diagnostic process,

the GUI will then load and initiate the module for the next task, the fault isolation

module. This module is discussed in the next chapter.

Rt)LEI01 can only report results to the ToolBook" GUI if a fault has been

detected. This is because the right hand side actions of a rule will only be executed

118

when the rule fires. Furthermore, in atom-based inferencing, as used by NEXPERT",

there is no "ELSE" structure. This presents a problem in reporting to the GUI that the

fault detection module has failed to detect a fault; implying that the transponder system

is functioning properly. The result is the requirement of an additional rule.

RULE_I02 represents the knowledge required to determine that the transponder is

functioning properly. It first checks to see if the ToolBook Graphical User Interface

(GUI) has requested fault detection. Then it scans the Pdr,,tDtNa properties of all objects

in the SENSORS class. It will fire only if it finds that all sensors are reporting "COOD."

Then, it executes an externally defined handlei" which communicates this result to the

GUI.

The GUI handler for this message informs the user that the data he has entered

is consistent with the proper functioning of the transponder system. The inference

process is terminated, the fault detection module is unloaded, and the fidex kernel

knowledge base is reset. The user then has the options to either end his session or

evaluate a new set of data.

CHAFFER VII

FAULT ISOLATION MODULE KNOWLEDGE BASE

This chapter discusses the rule module for fault isolation knowledge. Recall from

chapter 1 that each task in the diagnostic process was separated into an individual

knowledge base. The knowledge for the isolation of faults is contained in the

ISOLATE.tkb knowledge base. A complete listing of that module can be found in

Appendix C.

In section 1.3, the purpose of the fault isolation task was defined as to isolate a

suspected fault to a subsystem of the transponder. It was explained how this task also

involved the analysis of current sensor information in the form of qualitative descriptions

for sensor readings. The knowledge required to isolate a fault was then summarized as

finding a subsystem who's input sensor is reporting a "_OOD" reading and who's output

sensor is reporting a "840" reading.

Section 1.3 also discusses a subtask of sensor validation. This task was designed

to identify the possibility of a faulty sensor. The knowledge required to validate sensor

readings is the converse of that for isolating a fault. It can be summarizes as finding a

subsystem who's input sensor is reporting a "BAD" reading and who's output sensor is

reporting a "aOOD" reading. The following sections discuss the representation of

knowledge required for each of these tasks.

119

7.1 Isolation of Faults to a Transponder Subsystem

120

The knowledge required to isolate a fault is defined in Code Segment 7.1. First,

the objects which represent the hypotheses of rules are defined. Then the two rules of

the fault isolation task are defined.

Code Segment 7.1: Rules for the Isolation of a Fault

(@VERSION = 020)

(@OBJECT= Isolate_Fault_Symptoms

(@PROPERTIES = Value @TYPE= Boolean;))

(@RULE= RULE 201 ISOLATION OF FAULT_TO_SUBSYSTEM

(@LHS= (Yes (TBK_Request .Isolatlon))

(Yes (Model Matrix Switch_SubSystems))

(Is (< ISU-BSYSTElVlS I > .READING_IN) ('GOOD'))

(Is (< ISUBSYSTEMSl >.READING_OUT) ('BAD')))

(@HYPO = Isolate_fault_Symptoms)

(@RHS= (Let (< ISUBSYSTEMSl >.ISOLATED) (TRUE))

(CreateObject (< ISUBSYSTEMSI >) \

(lISOLATED_SUB_SYSTEMS)

(Execute ('FauMsolated')) "))

(@RULE=

(@LHS= (yes (TBK_Request. Isolatlon))

(Yes (Model_Matrix Switch_SubSystems))

(NotMember ({ I B-AD_SENSORS I }) \

(< [PWR_SENSORS[>))

(Is (< I BER_SENSORS I > .READING) ('BAD')))

(@HYPO= Isolate fault Symptoms)

(@PJ-IS = (CreateObject (FREQ_COMPONENTS) \

(1 ISOLATED_SUB_SYSTEMS)

('Let (FREQ..COMPONENTS .ISOLATED) (TRUE))

(Execute ('Faultlsolated'))))

RULE 202 ISOLATION OF FAULT TO FREQUENCY COMPONENTS

RULE_201 represents the knowledge required to isolate a fault to one of the

subsystems of the transponder. It first checks to see if the ToolBook Graphical User

Interface (GUI) has requested fault isolation. Next, it verifies that the matrix switch

paths have been modeled as subsystems of the transponder. Then it scans the READING_IN

and RE_tOINO_Otrr properties of all objects in the SUBSrSTEMS class. It will fire if it finds

121

any subsystem who's input reading is "GOOD"and output reading is "BAD." If the rule

fires, it flags the subsystem which met its conditions as 1SOLATEDand creates a list of

tSOLATEO_SUB_SYSTEMS in case more than one fault exists within the transponder. And

finally, it executes an externally defined handler in the GUI.

For this case, the purpose for sending this message to the GUI is simply to

suspend the inferencing process and turn control over to the GUI. Recall from section

5.5.2 that slot dynamics associated with the ISOLATEDproperty of SUSS_'STEMS effect the

loading and initialization of subsystem diagnostic modules.

ntrt.E_2o2 represents the knowledge required to isolate a fault to the group of

frequency components in the transponder. It also first checks to see if the ToolBook

Graphical User Interface (GUI) has requested fault isolation and that the matrix switch

paths have been modeled as subsystems of the transponder. However, this rule scans the

list of bad sensors that was created during the evaluation of sensor readings. It checks

for the condition where no signal power level sensors report "BAD"readings, and at least

one bit error rate register does. If it fires, it dynamically creates an object called

FREQ_COMPONENTS and attaches it to the ISOLATED_SUB_SYSTEMSclass. This new object

will inherit subsystem properties, and its 1SOLATEDflag is set to TRUE. And finally, as

for n_E_2ol, it executes an externally defined handler which communicates these results

to the GUI

7.2 Validation of Sensorory Information

The knowledge required to validate sensor readings is defined in Code Segment

7.3. First, an object to represent the hypothesis of the rule is defined. Then the single

rule of the sensor validation task is defined, noz.E_2o3 represents the knowledge required

to determine that the detected fault may be the result of a faulty sensor. Like those for

122

fault isolation,it first checksto seeif theToolBookGraphicalUser Interface(GUI) has

requestedfault isolation and that the matrix switch paths have been modeled as

subsystemsof the transponder.

Code Segment 7.2: Rules for the Validation of Sensors

(@OBJECT= Validate_Sensors

(@PROPERTIES= Value @TYPE=Boolean;)

(@RULE= RULE 203 VALIDATE_SENSOR_DATA

(@LHS = (Yes O'BK_Request .Isolation))

(Yes (Model_Matrix_Switch_SubSystems))

(Is (< ISUBSYSTEMSI > .READING_IN) ('BAD'))

(Is (< {SUBSYSTEMS{ > .READING_OUT) ('GOOD')))

(@HYPO -- Validate_Sensors)

(@RHS = (CreateObjcct (SENSOR_COMPONENTS) \

([ISOLATED_SUB_SYSTEMS I)

(Let (SENSOR_COMPONENTS.ISOLATED) O'RUE))

(Execute ('SensorFault "))))

However, this rule scans the READING_IN and READING_OUT properties of all

objects in the SUBS_'STEMSclass for the condition of any subsystem who's input reading

is "sAD" and output reading is "GOOD." If it fires, it dynamically creates an object called

SENSOR_COMPONENTS and attaches it to the ISOLATED_SUB_SYSTEMSclass. This new object

will inherit subsystem properties, and its tSOLATEB flag is set to TRUE. And finally, it

executes an externally defined handler which communicates these results to the GUI.

The handler for the "SensorFauIt" takes control and the NEXPERT inference

process is suspended. The user is informed that the data he has entered is not consistent

with the behavior of a fault in the transponder. He is also told that it is possible that this

is the result of a faulty sensor; an invalid sensor reading. The user then has the options

to reenter the sensory information, or to continue with the diagnostic process. Should

he choose to continue, the remainder of the diagnostic process is pursued as discussed

123

in section 1.3. Recall from that section the special conditions that will be considered

should a sensor fault be suspected.

CHAPTER VIII

FAULT DIAGNOSIS AND RESPONSE

KNOWLEDGE BASES

This chapter discusses the community of specialized diagnostic expert systems for

the fault diagnosis and response tasks in the diagnostic process. Recall from chapter 1

that each task in the diagnostic process was separated into an individual knowledge base.

Furthermore, the rule knowledge required to diagnose faults associated with each

subsystem of the transponder were also separated into specialized diagnostic knowledge

bases. Listings for these knowledge bases can be found in Appendices D through G.

These specialized diagnostic systems use knowledge which is rule-based and

backward chaining in nature. The hypotheses for these rules represent the potential faults

in the isolated subsystem. The order in which they are placed on the agenda is based on

the history of the fault states. Maintaining this history permits FIDEX to pursue the

most likely problems first.

Each diagnostic system was also designed with an ability to perform inexact

reasoning. This was done to overcome problems which resulted from limited information

about the transponder's performance. Such an ability was important in that the FIDEX

system would often need to make a "guess" at the most likely fault state. This relies

upon establishing incremental measures of belief or disbelief in rule conclusions. These

two factors are then used to establish an overall confidence when a conclusion is

supported by multiple rules.

124

125

The final task of fault response has been incorporated within the diagnostic

modules for each subsystem. The present strategy for fault response is to provide

recommendations for reconfiguring the components or sensors. Plans are to include the

capability to reconsider fault diagnosis if the recommended action was ineffective.

FIDEX would retain its past diagnosis, including recommendations, and reconsider the

problem with information made available following the corrections to the transponder.

There are several databases used by FIDEX. Seven of these are used to provide

FIDEX a limited learning capability. FIDEX stores the failure history of the transponder

subsystems system in associated database. Each known fault state is represented by a

record that contains fields that represent the failure history of that fault state. Following

diagnostics, FIDEX increments the history of the identified fault. This record keeping

is used to direct the search strategy of future sessions toward the most likely faults. The

next section discusses how this technique was implemented in all the diagnostic

knowledgebases.

8.1 Learning and Adaptive Search Strategies

When NEXPERT's inference mechanism needs to process a slot or rule

hypothesis, it does so according to their inference priorities. This processing occurs by

the order of highest-first. The value of a slot or hypothesis's inference priority may be

initialized from its default value of 1 to any integer between -32,000 and 32,000.

Inference priorities can be dynamically changed to allow slots to be processed

with different priorities at different times. This is Neuron Data's mechanism for

allowing the application to adapt itself to changing conditions. To implement this, a

special slot called an inference slot is assigned to a slot's inference priority. The

126

inferencepriority then takeson thevaluecontainedby theinferenceslot. This value is

called the inference number of the atom.

The search strategy is adaptive in that the priorities by which known fault states

are placed on the agenda is based upon the values maintained in the history database.

A class level property of all fault states is the integer INF_CaT. The value of this property

is retrieved from the database when the diagnostic task is initialized. This property is

then assigned to the value of the inference slot of the fault state hypothesis. When the

diagnostic task establishes a known fault state, the value of its inference category is

incremented accordingly. The updated value is then stored in the learning database.

Recall the definition of INF_CAT property from section 4.4. This integer property

is shared by all objects in the I:AULTSrATES class. As each object in that class represents

a known fault state, this property is linked as the inference slot of fault state hypotheses.

Code Segment 4.1 shows this linking for the aMP_GENERaL_FaILURE(Amplifier General

Failure) fault state.

Code Segment 8.1: Linking of FAULT STATE Inference Slots

(@SLOT= AMP GENERAL FAILURE.VERIFIED

@INFATOM= AMP_GENERAL_FAILURE.INF CAT;

One limitation of the NEXPERT inference mechanism is that if the value of a slot

defined as an inference slot is UNg2COWl¢,NEXPERT will not try to evaluate a value for

that slot. Therefore, the values of < IFAULT_ST,4TESl>.INF_CaT must be retrieved from

the database before the diagnostic session begins. This initialization is effected by

placing a rule on the agenda and forcing its evaluation. Code Segment 8.2 gives the

definition of this rule.

Code Segment 8.2: Retrieval of < [FAULT_STATES I >.INFCAT

127

(@RULE_

(@LHS= (Yea (lmfid/z__lNF_CATs))

(@HYPO,, Reu'ieve _ CATs Frem_DalaBa_)
(@RHS= (Retrieve ('CHIRCVR.nxp')

(@TYPE ffi NXPDB;

@FWRD = FALSE;

@UNKNOW= TRUE;

@NAME-- "< _FAULT STATES} >"

@PROPS-- INF CAT;

@FIELDS = "INF_CAT" ;)))

RULE 397 RETRIEVE INFERENCE CATEGORIES_FROM_DATABASE

During the initialization of a diagnostic module (ie. the channel 1 receiver

subsystem diagnostic module in Code Segment 8.2), a value of TRUE is volunteered for

InitianZe.JNF_CATs. This places RULE_397 on the agenda and causes it to fire. The right

hand side action then retrieves all inference category values form the designated database.

In short, this discussion has addressed the recalling of inference categories from previous

sessions with FIDEX. The final topic of this section is to address how FIDEX stores,

or learns, about new inference categories for its fault state hypotheses.

During the initialization of diagnostic knowledge bases, the IC actions associated

with slots are disabled, @CACTIONSON= FALSE;. Once the initialization process has

completed, they are enabled again, @CACTIONSON= TRUE;. This allows changing the

value of a fault state's INF_CAT slot tO trigger the saving of a new inference category.

Code Segment 8.3: Storing < IFAULT_STATES I >.INF_CAT

(@SLOT= FAULT STATES.INF CAT

(_.ACTIONS = (Write ('CH! RCVR.nxp')

(@TYPE= NXPDB;

@FWRD = FALSE;

@UNKNOW= TRUE;

@PROPS= INF CAT;

@FIELDS,,_ "[NF CAT';

@ATOMS= SELF;))))

128

Code Segment 8.3 shows how changing the value of any FAULT_STATESinference

category will result in that new value being written to the learning database. The values

for the inference category are incremented by rules which support the fault state

hypotheses. Code Segment 8.4 gives an example of such a rule.

Code Segment 8.4: Incrementing < IFAULT_STATESI >.INF_CAT

(@RULE ffi RULE301 A'ITENUATORSETTING ERROR

(_LHS _ (> (IFI_ A'VrN_I .SETT1NG_ERRO R) (2.0))

(_HYPO ffi ATtENUATOR_SETTING ERROR.VERIFIED)

(@RHS ffi (Do (ATTENUATOR_SETTING ERROR .INT_CAT + 1)

(A'VrENUATOR_SETTING_ERROR. IN'F_CAT))))

Code Segment 8.4 shows a rule that supports a fault state hypothesis that an IFPC

attenuator has been set wrong. If this rule fires, its action will add 1 to the value of the

inference category for the fault state ATTENUATOR_SETTING_ERROR.

8.2 Subsystems Diagnostic Modules

The operation of all the diagnostic modules is identical. Therefore, they will be

discussed together. Complete listings may be found in the appendices. The following

discussion will be in a general sense for all fault states.

Again, each known fault state is represented by an object attached to the class of

fAULt_STArES in the object space of the diagnostic expert systems. After initialization,

a suggestion is made that all fault states are to be verified, @SUC_ESrLST=

< IFAULT_STATESI>.VERIFIED. This suggestion places all fault states on the agenda. This

is, in fact, an ordered list. According to the discussion of the previous section, the order

129

by which they are placed on the agenda will be based on the values of their tNF_CAT

properties.

The inference strategy used in the diagnostic process to this point has been

forward chaining, or data driven. Now, the strategy for diagnosing fault states turns to

backward chaining. Each fault state hypothesis is taken from the agenda, in turn, and

pursued exhaustivly. Associative rule knowledge which supports each hypothesis will

be evaluated in an attempt to conclude the existence of a predefined fault state.

As the symptoms for these hard coded failure modes are pursued, evidence is also

accumulated toward belief in, or rejection of, cumulatively associative and abstract fault

states. Once the entire list has been evaluated, the fault state with the highest confidence

factor is then presented as the diagnosed fault. The mechanisms of this inexact reasoning

were discusses in several previous chapters.

Again, as discussed in previous chapters, it is possible that the entire list be

evaluated and no fault state indicate sufficient certainty. It is here where the

accumulation of evidence at the abstract, or class, level becomes significant. FIDEX is

able to recover from its failure to diagnose the fault state by presenting a classification

of faults as the diagnosed fault. This is to say, FIDEX has the capacity to offer

conclusions of the form: "The observed symptoms do not correspond to any known fault

states of the transponder system. However, they do appear to be consistent with those

of an amplifier failure."

Another important aspect of the architecture of the fault diagnostic modules is the

facility with which diagnostic knowledge may be maintained. As the experience of the

SITE personnel grows, and more knowledge is gained about the failure modes of the

transponder, this knowledge can be appended to the knowledge bases by two simple

manners. First, should more knowledge be gained about an existing fault, new rules may

130

be added. By attaching these new rules to the existing fault state hypotheses, they will

automatically be incorporated into the inference strategy of the diagnostic module.

Should a new fault state be discovered, the procedure is slightly more involved,

but not more complex. A new fault state can be added to a diagnostic module by first

creating an object to represent it and attaching that object into the F,4_T_s'r,t_S

hierarchy. Then as discussed earlier, any rule knowledge which supports that new fault

state can be encoded into the inference strategy by attaching it to the new hypothesis.

CHAPTER IX

SUMMARY OF RESEARCH

FIDEX, the Fault Isolation and Diagnosis Expert System, was the result of a

research contract with the National Aeronautics and Space Administration (NASA),

Lewis Research Center, in Cleveland Ohio. It was designed to provide intelligent

computer diagnostics for a Ka-band satellite transponder system, as part of the Advanced

Communication Technology Satellite (ACTS) System. The overall goal of this research

was to enhance the reliability of the satellite by demonstrating the application of expert

system technologies as a means for providing the transponder with an autonomous

diagnosis capability.

The results of this research were more than just the development of a prototype

diagnosis expert system. The frame-based approach that was taken proved that

hierarchical structures are the best means for representing complex structures such as the

satellite's: subsystems, components, sensors, and fault states. Furthermore, FIDEX

demonstrated that integrating these hierarchical structures into a lattice provided a flexible

representation scheme that greatly facilitated the maintenance of the system architecture.

FIDEX's ability to detect abnormalities in the sensors which provide information

on the transponder's performance proved effective for ruling out simple sensor

malfunctions. However, The major strengths of the FIDEX system have appeared on

two different fronts.

First, FIDEX proved that inexact reasoning techniques, based on the

incrementally acquired evidence, are effective means for overcoming limitations on the

131

132

availability of information. This approach enabled FIDEX to reason in an abstract sense,

and thus recover from situations where no concrete diagnostic conclusion could be

reached. Furthermore, the frame-based architecture which resulted for the

implementation of these techniques greatly facilitates the matter of maintaining the

knowledge which supports the diagnosis of fault states.

The second major strength of the FIDEX system was that it demonstrated that a

primitive databased learning ability was an effective approach to maintaining records of

past diagnosis studies. This ability permitted FIDEX to adapt its diagnostic search

strategies to search first for those faults which are most likely to occur. Moreover, as

most diagnostic expert systems learn through adaptations of new diagnostic knowledge,

FIDEX enhanced its intelligence by learning about the diagnostic process itself.

In its present form, FIDEX is a prototype system that is practical for

demonstration purposes only. However, its overall design, with its generic structures and

innovative features, makes the FIDEX system an applicable example for other types of

diagnostic systems. Furthermore, the stress placed on the maintainability of its

architecture provides for future developments and expansions which encompass a wide

range of possibilities. Primarily however, it is the hope of its developers that the FIDEX

system will eventually be augmented into a fully autonomous diagnostic expert system.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81

[9]

[10]

[11]

[12]

Bagwell, J.W., ".4 System for the Simulation and Evaluation of Satellite Communication

Networks," 10t_ AIAA Communication Satellite Systems Conference, Proceedings of, January
1984.

Barr, A., and Feigenbaum E.A., (eds.), The Handbook of Artificial Intelligence, vol. 1,

William Kaufman, 1981.

Bobrow, D.G., etal, "CommonLoops: Merging Lisp and Object-Oriented Programming," The

Conference on Object-Oriented Programming Systems, l.amguages and Applications, Proceedings

of, 1986, pp. 17-29.

Boehm, B.W., Characteristics of Software _, Elsevier North-Holland (New York, NY),
1978.

Buzzard, G.D., and Mudge, T.N., "Object-Based Computing and the Aria Programming

Language," Computer, March 1985, pp. 11-19.

Cox, B.J., "Message�Object Programming: An Evolutionary Change in Programming

Technology," IEEE Software, January 1984, pp.50-61.

Diederick, J., and Milton, J., "Experimental Prototyping in Smalltalk," IEEE Software, May

1987, pp.50-64.

Durkin, J., Expert S_.ystem Design and Development, Macmillan Publishing Co.(New York, NY),
1993.

Durkin, J., Tailo, D.P., and Petrik E., "FIDEX: An Expert System for Satellite Diagnostics,"

Second Space Communications Technology Conference: Onboard Processing and Switching,

NASA S&T Information Division Publication 3132, pp.143-52, Proceedings of Conference at

NASA-Lewis Research Center, (Cleveland, OH), November 12-14, 1991.

Dutta, K., "Modular Programming in C: An Approach and an Example," SIGPLAN Notices,

March 1985, pp.9-15.

Erman, L.D., "The HEARSAY-1I Speech Understanding System: Integrating Knowledge to Resolve

Uncertainties," Computing Su___q___g_,Vol. 12, No.2, June 1980, pp.213-253.

Fujikawa, G., and Kerczewski, R.J., "Performance of a Ka-Band Satellite System Under

Variable Signal Power Conditions," 1987 IEEE MTT Microwave Symposium, Proceedings of,
June 1987.

133

[13]

[14]

[151

[16]

[17]

[18]

[19]

[20]

[211

[221

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

134

Harmon, P., Malls, R., and Morrissey, W., Exoert Systems Tools and Applications, John

Wiley and Sons (New York, NY), 1988.

lngalls, D.H.H., "Design Principles Behind Smalltalk," B.B.Bx_,August 1981, pp.286-298.

Kay, A.C., "Microelectronics and the Personal Computer," Scientific American, September 1977,
pp. 231-244.

Kerczewski, R.J., and Fujikawa, G., "Performance Measurements for a Laboratory-Simulated

30/20 GHz Communication Satellite Transponder," 13_ AIAA International Communication

Satellite Conference, Proceedings of, March 1990.

Leonard, R.F., and Kerczewski, R.J., "Radiofrequency Testing of Satellite Segment of Simulated

30/20 GHz Satellite Communication Systems," Internal Publication, NASA-Lewis Research Center

(Cleveland, OH), November 1985.

Love, T., "Experiences with Smalltalk-80" for Application Development," Softfair: A Conference

on Software Development Tools, Techniques, and Alternatives, Proceedings of, 1983, pp.61-65.

Ledbetter, L., Cox, B., "Software-IC's," B.B_y._,June 1985, pp.307-315.

MacLennan, B.J., "Values and Objects in Programming Languages," SIGPLAN Notices,

December 1982, pp.70-79.

Minsky, M.L., "Frame System Theory," Thinking: R_din_s in Cognitive Science, ed. P.N.

Johnson-Laird and P.C. Watson, Cambridge (CUP), 1975.

Pascoe, G.A., "Elements of Object-Oriented Progrcmtming," Byte, August 1986, pp. 307-316.

Peterson, G.E., "Introduction to Object-Oriented Computing," TUTORIAL: Object-Oriented

Computing, IEEE Computer Society Press (Los Alamitos, CA) 1990, pp. 1-4.

Peterson, G.E., "Smalltalk: An Object-Based Language," TUTORIAL: Object-Oriented

Computing, IEEE Computer Society Press (Los Alamitos, CA) 1990, pp.37-40.

Peterson, G.E., "Object-Oriented Programming in Ada," TUTORIAL: Object-Oriented

Computing, IEEE Computer Society Press (Los Aiamitos, CA) 1990, pp.97-98.

Peterson, G.E., "Object-Oriented Programming Languages," TUTORIAL: Object-Oriented

Comouting, IEEE Computer Society Press (Los Alamitos, CA) 1990, pp. 133-136.

Pfleeger, S.L., Software Engineering-The Production of _ Software, Macmillan Publishing

Co. (New York, NY), 1987.

Reenskaug, T.M.H., "User-Oriented Descriptions of Smalltalk Systems," B_y_, August 1981,

pp.148-166.

Rentsch, T., "Object-Oriented Programming," SIGPLAN Notices, September 1982, pp. 51-57.

Robson, D., "Object-Oriented Software Systems," Byte, August 1981, pp. 74-86.

135

[311 Schlegelmilch, R., Durkin, J., and Petrik, E., "GTEX: An Expert System for Diagnosing Faults
in Satellite Ground Stations," Second Space Communications Technology Conference: Onboard

Processing and Switching, NASA S&T Information Division Publication 3132, pp.103-112,

Proceedings of Conference at NASA-Lewis Research Center, (Cleveland, OH), November 12-14,
1991.

[32] Schmucker, K.J., "Object-Oriented Languages for the Macintosh," Byte, August 1986, pp. 177-

185.

[33] Shalkhauser, K.A., and Kerczewski, R.J., "Automated Testing of Satellite Communications

Systems and Subsystems," 25 thAutomatic RF Techniques Group Conference, Proceedings of, June
1985.

[34] Shortliffe, E.H. and Buchanan, B.G., ",4 model of Inexact Reasoning in Medicine,"
Mathematical Biosciences, Vol.23, 1975.

[351 Stefik, M., and Bobrow, D.G., "Object-Oriented Programming: Themes and Variations," The

AI Magazine, Winter Edition 1986, pp.40-62.

[36] Stephan, A., and Erikson, C.A., "GETTING EXPERT SYSTEMS OFF THE GROUND: Lessons

Learned from Integrating Model-based Diagnostics with Prototype Flight Hardware," Second

Space Communications Technology Conference: Onboard Processing and Switching, NASA S&T
Information Division Publication 3132, pp. 135-42, Proceedings of Conference at NASA-Lewis

Research Center, (Cleveland, OH), November 12-14, 1991.

[37] Tallo, D.P., Durkin, J., and Petrik, E., "Intelligent Fault Isolation and Diagnosis for
Communication Satellite Systems," 1992 Goddard Conference on Space Applications of Artificial

Intelligence, NASA S&T Information Division Publication TBA, pp.TBA, Proceedings of
Conference at NASA-Goddard Space Flight Center, (Greenbelt, MD), May 5-7, 1992.

[38] Voiz, R.A., Mudge, T.N., and Gal, D.A., "Using Ada as a Programming Language for Robot-

Based Manufacturing Cells," IEEE Transactions on Systems, Man, and Cybernetics,

November/December 1984, pp. 863-878.

[391

[40]

Waterman, D.A., A Guide to Exoert Sst_y2.L_._.,Addison-Wesley (Reading, MS), 1986.

Webster, Webster's New World Dictionary, Second College Edition, William Collins World

Publishing Co., Inc., (Cleveland, OH) 1976.

[41] Wegner, P., "On the Unification of Data and Program Abstraction in Ada," 10_ Annual ACM

Symposium on Principles of Programming Languages, Proceedings of, 1983, pp. 256-264.

[421 Windmiller, M.J., "Unique Bit-Error-Rate Measurement System for Satellite Communication

Systems," Internal Publication, NASA-Lewis Research Center (Cleveland, OH), March 1987.

[43] Wirth, N., "History and Goals ofModula-2," .B_y.D.,August 1984, pp. 145-152.

[44] Xerox Learning Research Group, The, "The Smalltalk-80 System," B_y.Le.,August 1981, pp.36-
48.

APPENDIX A

FIDEX KERNEL KNOWLEDGE BASE

A.1 Sensor Initialization Database

NameI NONINALI TOLERANCEI ZERO_LEVELI

BER_II 0.01 0.0051 0.01
BER_21 0.01 0.0051 O.Ol
BER31 0.01 0.0051 0.01
BER_4I 0.01 0-005l O'Ol
BER_5I O.Ol 0.0051 0.0[
BER_61 0.01 O.OOSl 0.01
PS_lI -6.01 2.01 -30.01
PH_21 -6.01 2.01 -30.01
PM_31 0.01 2.01 -30.01
PM_41 0.01 Z.Ol -30.01
pN51 -15.01 2.01 "30-01
PH_61 -15.01 2.01 -30.01
PH_71 5.01 2.01 -30.01
PH81 5.01 2.01 -30.01

136

v=.=4

0

0

i i

...................................... _ '_ _
, __ _ _

000000_ °°°° o

--_ ________

,i _ ;

ol _ _ m m m m m m m m m m m m m m m m m 00000_mm _

o o o o o o o o o o o o o o o o _ _ _ _ _ o _

i'ii
...................................

I i _ _ _ _ _ _ _ _ _ _ _ _ _ Z _ _ _ _ z _ __ _ _ _ _ _ _ _ _ _ _ _. _, _, _. _ _ _

i III _ __III

........_i _-_ll _ _ lli_ i i i

138

A.3 FIDEX Kernel Knowledge Base

(_VERSION= 020)

(@PROPERTY= AB @TYPE=FLoat;)
(@PROPERTY= AD @TYPE=FLoat;)

(gPROPERTY= BAD @TYPE=Boolean;)
(_PROPERTY= Bad Sensors _TYPE=Bootean;)

(_PROPERTY= BIAS_CURRENT @TYPE=FLoat;)
(@PROPERTY= BIAS VOLTAGE _TYPE=FLoat;)

(gPROPERTY= CF _TYPE=FLoat;)

(_°ROPERTY= CONPONENT @TYPE=String;)
(_PROPERTY= CO$tPONENT_IN @TYPE=String;)

(gPROPERTY= CONPONENT_IN_2 @TYPE=String;)
(@PROPERTY= CONPONENT_OUT @TYPE=String;)

(_OROPERTY= CONPONENT OUT 2 gTYPE=String;)
(@PROPERTY= CONFIDENCE 8TYPE=String;)

(@PROPERTY= CONFIG @TYPE=String;)
(@PROPERTY= COUPLING @TYPE=Boolean;)
(_PROPERTY= DATA @TYPE=FLoat;)

(_PROPERT¥= DESCRIPTIOR _TYPE=Str_ng;)

(@PROPERTY= DIAGNOSTIC NOOULE @TYPE=Boolean;)
(@PROPERTY= DRAIN_VOLTAGE @TYPE=FLoat;)

(_PROPERTY= ERROR @TYPE=FLoat;)
(_PROPERTY= EVALUATED TYPE=Boolean;)

(@PROPERTY= FREQUENCY _TYPE=FLoat;)

(_PROPERTY= FREQUENCY 2 @TYPE=FLoat;)
(_PROPERTY= FREQUENCY IN @TYPE=FLoat;)

(@PROPERTY= FREOUENCYIN_2 @TYPE=Float;)
(gPROPERTY= FREQUENCY OUT @TYPE=FLoat;)

(_PROPERTY= FREQUENCY_OUT_2 @TYPE=FLoat;)
(@PROPERTY= GAIN @TYPE=F|oat;)

(@PROPERTY= GAIN_2 @TYPE=FLoat;)
(_PROPERTY= GATE_VOLTAGE @TYPE=FLoat;)

(_PROPERTY= GOOD @TYPE=Boolean;)
(@PROPERTY= HIGH @TYPE=Boolean;)

(_PROPERTY= INF CAT @TYPE=FLoat;)
(_PROPERTY= ISOLATED @TYPE=Boolean;)
(_PROPERTY= LEVEL @TYPE=String;)

(@PROPERTY= LEVEL_IN _TYPE=String;)

(@PROPERTY= LEVEL OUT @TYPE=String;)
(_PROPERTY= LO_INPUT_FREQUENCY @TYPE=FLoat;)

(@PROPERTY= LO_INPUT rOgER @TYPE=FLoat;)
(@PROPERTY= LO UNIT _TYPE=String;)
(_PROPERTY= LO_ @TYPE=Boolean;)

(_PROPERTY= MB @TYPE=FLoat;)

(@PROPERTY= HD @TYPE=FLoat;)

(@PROPERTY= MODEL_GAIN @TYPE=FLoat;)
(_PROPERTY= NOOEL_GAIN_2 @TYPE=FLoat;)

(@PROPERTY= I_ODEL_PO_ER_fN gTYPE=F(oat;J
(@PROPERTY= MOOEL_POWER_IN_2 @TYPE=FLoat;)

(@PROPERTY= NOOEL_POWER_OUT @TYPE=FLoat;)
(_PROPERTY= MODEL_POiJER OUT 2 @TYPE=FLoat;)

(_PROPERTY= MODEL_SETTING _TYPE=FLoat;)
(@PROPERTY= NAHE @TYPE=String;)

(@PROPERTY= NASA ID @TYPE=String;)
(_PROPERTY= NOI41NAL gTYPE=FLoat;)

(@PROPERTY= NONINAL_BIAS_CURRENT @TYPE=FLoat;)
(@PROPERTY= NOMINAL BIAS VOLTAGE @TYPE=FLoat;)
(_PROPERTY= NOI4INAL-DRAIN VOLTAGE @TYPE=FLoat;)

(_PROPERTY= NONINAL_FREOUENCY @TYPE=FLoat;)

(_PROPERTY= NON1NAL_FREQUENCY_2 @TYPE=FLoat;)

(@PROPERTY= NONINAL_FREQUENCY_IN @TYPE=FLoat;)
(_PROPERTY= NONINAL FREQUENCY IN 2 @TYPE=Float;)
(_PROPERTY= NONINALZFREQUENCY-_OU_ @TYPE=FLoat;)

(@PROPERTY= NORINAL_FREQUENCY OUT 2 @TYPE=FLoat;)

(@PROPERTY= NOHINAL_GAIN @TYPE=FLoat;)
(_PROPERTY= NOHINAL_GATE VOLTAGE @TYPE=FLoat;)
(@PROPERTY= NONINAL_LO1NPUT_FREOUENCY_TYPE=F[oat;)

(@PROPERTY= NON[NAL LO INPUT_POgER_TYPE=FLoat;)

(@PROPERTY= NONINAL_POgER_IN @TYPE=F|oat;)

(_oROPERTY= NOt41NAL_PO_/ER_IN_2 @TYPE=FLoat;)
(@PROPERTY= NONINAL_POMER_OUT gTYPE=Ftoat;)

(@PROPERTY= NOMINAL POMER OUT 2 @TYPE=FLoat;)
(@PROPERTY= Nomina[_SensorData _TYPE=BooLean;)

(i_PROPERTY= NONINAL SETTING @TYPE=FLoat;)
(@PROPERTY= OK @TY-PE=BooLean;)

(@PROPERTY= POgER_IN gTYPE=FLoat;)

(@PROPERTY= POt_ER_IN_2 @TYPE=FLoat;)
(@PROPERTY= POWER_OUT @TYPE=FLoat;)
(@PROPERTY= POb/ER OUT 2 @TYPE=FLoat;)
(@PROPERTY= READING @TYPE=String;)

(@PROPERTY = READING IN _TYPE=Strir_I;)
(@PROPERTY= READING OUT @TYPE=String;)
(@PROPERTY= RTN_LEVEL @TYPE=Boolean;)

(@PROPERTY= RTN_NORINAL @TYPE=Boolean;)
(@PROPERTY= RTN READING @TYPE=Boolean;)
{_PROPERTY= SEnSOR_IN _TYPE=Strfng;)

(@PROPERTY= SENSOR OUT @TYPE=String;)
(@PROPERTY= SETTING @TYPE=FLoat;)

(@PROPERTY= SETTING ERROR _TYPE=F[oat;)
(@PROPERTY= TOLERANCE gTYPE=F[oat;)

(@PROPERTY= TYPE @TYPE=String;)
(@PROPERTY= VERIFIED @TYPE=Boolean;)

(_PROPERTY= ZERO @TYPE=Boolean;)
(@PROPERTY = ZERO_LEVEL @TYPE=FLoat;)

(@CLASS=AMPLIF|ER_FAULTS
(@PROPERTIES=

AB
AD
CF
COHPONENT
CONFIDENCE
INF_CAT
NB
ND
NANE
VERIFIED

)
)
(_CLASS=AHPLIFIERS

(@PROPERTIES=
BIAS_CURRENT
BIASVOLTAGE
CONPONENTIN
CONPONENTOUT
DESCRIPTION

DRAIN VOLTAGE
FREQUENCY

FREQUENCY IN

FREQUENCY OUT
GAIN
GATE VOLTAGE

MODEL'_GAIN

NODEL_POWER_IN
NODELPOWER_OUT
NAHE

NASA ID

NONINAL_BIAS_CURRENT
NOMINAL BIAS VOLTAGE
NONINAL-DRAIN VOLTAGE
NON]NAL-FREQUENCY

NONINALZFREQUENCY_IN

NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN
NOMINAL GATE VOLTAGE

NOH[NAL:PO_/ER ,IN

NOHINAL_POWER_OUT
POt,/ERIN

POt,JER OUT
)

)

(@CLASS = ATTENUATOR_FAULTS
(@PROPERTIES=

AB

AD

CF
COHPONENT

CONFIDENCE

[NF_CAT
NB
MD

NAHE
VERIFIED

)

)

(@CLASS= ATTENUATORS
(@PROPERTIES=

COMPONENT_IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN

NODELGAIN

NODEL_POgER_I N
NODEL PO_'ER OUT

MODEL-SETT ING
NANE

NASA ID

NONINAL_FREQUENCY

NONI NAL_FREQUENCY_I N
NONI NAL_FREQUENCY_OUT
NOMINAL_GAIN

NOMI NAL_POWER_I N

NONI NAL_POWER_OUT
NONINAL SETTING
POWER IN
PONER-OUT

SETTING

SETT] NG_ERROR
)

)

(@CLASS= BAD SENSORS

(@PROPERT I ES'=

RTN_READ [NG
)

)

(@CLASS= BER REGISTERS
(;)PROPERT I ES-=

CONPONENT_I N
CONPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_] N
FRE_.IENCY_OUT
GAIN

NOOEL_GA I N

HOOEL_POMER_I N

NOOEL_POWER_OUT
NAHE

NASA ID

NONI NAL_FREQUENCY
NON]NAL FREQUENCY IN

NONI NAL-FR EQUENCY-OUT

NONI NAL_GAI N
NONI NAL_POT/ER_ I N
NOMINAL POWER OUT
POWER IN -

POWER-OUT

)

)

(@CLASS= BER SENSORS
(@SUBCLASSES=

CHI_BERs
CH2_BERS

)

(@PROPERTIES=
DATA
ERROR

EVALUATED
LEVEL

NAHE
NONINAL

READING

RTN_LEVEL
RTN_NONINAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

139

(_CLASS =

(_SUBCLASSES=

FAULT_STATES
)

(_R_ERTIES=
AB

AD

CF
CONFIDENCE

NB
ND

)

)

CERTAINTY ANALYSIS

(_LASS= CH1 BERs
(_ROPERT I E_=

DATA

ERROR

EVALUATED
LEVEL

N_E
N_INAL

READING
RTN LEVEL

1

RTN NONI NAL
RTN-READ I NG
TOL[RANCE

TYPE

ZERO_LEVEL
)

)

(_LASS= CH2 BERs
(_ROPERTIE_=

DATA
ERROR

EVALUATED
LEVEL

NANE
NONINAL

READING

RTN_LEVEL

RTN_NONINAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

(@CLASS= CONPONENTS
(@SUBCLASSES=

AHPLIFIERS
ATTENUATORS

LOCAL OSCILLATORS
RECEIVERS

P_ER NETERS
BER REGISTERS
SWITCHES

GaAsFETS

TWTAS
NIXERS

)

(@PROPERTIES=
CONPONENT IN
CONPONENT-OUT
DESCRIPTION

FREQUENCY

FREQUENCY IN
FREQUENCY-OUT

GAIN

MODEL_GAIN
MODEL_POWER_IN

NODEL_POWER_OUT
NAHE

NASA ID

NONINAL_FREQUENCY

NONI NAL_FREQUENCY_I N

NONI NAL_F REQUENCY_OUT
NOH I NAL_GA I N

NON I NAL_POIA/ER_ l N
NON[NAL POWER OUT

POWER_I N
POWER_OUT

(_LASS= FAULT_STATES
(@SUBCLASSES=

_PLIFIER FAULTS
ATTENUATOR FAULTS

GaAs FET FAULTS

LO FAULTS
HI_ER FAULTS

RECEIVER FAULTS
SWITCH F_ULTS

TWTA_FAULTS
)

(@PROPERTIES=
AS
AD

CF
CONPONENT
CONFIDENCE

INF_CAT
HB
HD

NAME
VERIFIED

)

(@CLASS= GaAs FET FAULTS

(@PROPERTIES=
AB

AD
CF

CONPONENT

CONFIDENCE
INF CAT
NB -

HI)
NAHE

VERIFIED

)

)

(@CLASS= GaAsFETS
(@PROPERT I ES=

COMPONENT_I N
COMPONENT OUT
DESCRIPTION

DRAIN VOLTAGE
FREQUE'NCY

FREQUENCY IN

FREOUENCY_OUT
GAIN

GATE VOLTAGE

HOOE[_GAI N

HODEL_POWER_I N
HODEL_PO_/ER_OUT
NANE

NASA ID
NOI41NAL DRAIN VOLTAGE
NONI NAL-FREQUENCY

NONI NAL-FREQUENCY_I N

]40

NON] NAL FREQUENCY OUT

NOMINAL GAIN
NOMINAL GATE VOLTAGE

NON] NAL-POWER_I N
NOMINAL POt,/ER OUT

POWER_IN -

POWER OUT
)

)

(@CLASS= LO FAULTS

(@PROPERT 1E'S=
AB

AD
CF

COMPONENT
CONFIDENCE

INF_CAT
liB

14(
HARE

VERIFIED

)
)

(@CLASS= LOCAL_OSCILLATORS
(@PROPERT I ES=

CONPONENT_I N
COI4PONEHT_OUT
COMPONENT OUT 2

DESCR I PT ION
FREQUENCY

FREQUENCY_] N

FRECH./EHCY OIJT
FREQUENCY OUT 2
GAIN

MODEL_GAIN

HODEL_POWER_I N
MODEL_POWER_OUT
NAME

NASA ID

NOMINAL FREQUENCY

NONl NAL FREQUENCY_] N

NON] NAL FREQUENCY_OUT
NOMINAL_FREQUENCY OUT 2

NONIHAL GAIN

NONI NAL POWER_I N
NONI NAL POt,/ER_OUT
NOMINAL POWER OUT 2

POWER_IN
PO_/ER OUT
POWER-OUT 2

)
)

(@CLASS= MIXER_FAULTS
(@PROPERTIES=

AB

AD
CF
COMPONENT

CONFIDENCE
INF CAT

NB

liD
NAME

VERIFIED

)
)

(@CLASS= MIXERS
(@PROPERTIES=

COHPONENT_IN

COMPONENT OUT

DESCRIPTION

FREQUENCY

FREQUENCY_IN

FREQUENCY_OUT
GAIN

LO_INPUT_FREQUENCY

LO_INPUT_POtJER
LO UNIT

NC_EL_GAIN

MODEL_POWER_IN

MODEL_POWER_OUT
NAME

NASA ID
NOMINAL FREQUENCY

NONINALZFREQUENCY_IN
NOHINAL_FREQUENCY_OUT

NOMINAL_GAIN

NOHINAL_LOINPUT_FREQUENCY
NOMINAL_LOINPUT_POWER

NC_41NAL_POWER_IN
NOHI HAL_POWER_OUT

POWER_IN
POWER_OUT

)

(@CLASS= POWER_NETERS
(_PROPERTIES=

COMPONENT_IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FRE_JENCY_IN

FREQUENCY OUT
GAIN

MOOEL_GAI N
MODEL_POWER_] N

MODEL_POWER_OUT
NAME

NASA ID

NOMINAL_FREQUEHCY
NOHINAL FREQUENCY IN

NONINALZFREQUENCYZOUT

NOMINAL_GAIN

NOMINAL_POWER_IN

NOMINAL_POWER_OUT
POWER_IN

POWER_OUT
)

)

(@CLASS= PWR SENSORS
(@PROPERTIES=

DATA

ERROR
EVALUATED

LEVEL
NAME

NOMINAL
READING

RTN_LEVEL
RTN NOHINAL
RTN-READING

TOLERANCE

TYPE

ZERO_LEVEL
)

)

141

(@CLASS= RECEIVER_FAULTS
(@PROPERTIES=

AB
AD

CF
COMPONENT

CONFIDENCE

INF_CAT
HB

MD
NAME

VERIFIED

)
)

(@CLASS= RECEIVERS

(gPROPERT IES=

COMPONENT_I N
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN

FREQUENCY_OUT
GAIN

LO_I NPUT_FREQUENCY
LO_I HPUT_POWER
LO UNIT

M_E L_GA IN

MODEL POWER IN

MOOEL-POWER-OUT
NAME
NASA ID

NOMINAL_FREQUENCY

NONI NAL_FREQUE HCY_] N
NON] NAL_FREQUEHCY_OUT

NOMINALGAIN
NONI NAL_LO INPUT FREQUENCY

NONI NAL_LO,_I NPUT_POWER
NOMI NAL_POWER_I N

NOMI NAL_PCA4ER_OUT
POWER_ I N

POWER_OUT
)

)

(@CLASS= SENSORS

(@SUBCLASSES=

PWR_SENSORS

BER_SENSORS
)
(@PROPERTIES=

DATA

ERROR
EVALUATED

LEVEL
NANE
NOMINAL

READING

RTH_LEVEL
RTN NOMINAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

(@CLASS= SUBSYSTEMS
(@PROPERTIES=

DIAGNOSTIC...MOOULE
ISOLATED

LEVEL_IN

LEVEL OUT

NAME

READING_IN
READING OUT

SENSOR_TN

SENSOR_OUT
)

)

(@CLASS= SWITCH_FAULTS
(@PROPERTIES=

AB

AD
CF

COMPONENT

CONFIDENCE

INFCAT
MB
MD
NAME

VERIFIED

)

(@CLASS= SWITCHES

(@PROPERTIES=
COMPONENT IN

COMPONENT IN 2
COMPONENT OUT

COMPONENTZOUT_2
DESCRIPTION

FREQUENCY

FREQUENCY_2
FREQUENCY IN

FREQUENCYZIN_2
FREQUENCY OUT
FREQUENCY-OUT 2

GAIN
GAIN 2

HODE_...GA I N
MODEL GAIN 2

HODELZPO_ER_I N

MODEL_PC_IER_I N2

MODEL_PC_/ER OUT
MODEL_POWER OUT 2
NAME

NASA ID

NOMINAL_FREQUENCY

NOMINAL_FREQUENCY_2
NOMINAL FREQUENCY IN

NOMINAL_FREQUENCYZIN_2

NOMINALFREQUENCYOUT
NOMINAL FREQUENCY OUT 2

NOMINAL_GAIN
NOMINAL_POWER_IN

NOMINAL_POWER_IN_2
NOMINAL_POWER_OUT
NOMINAL POWER OUT 2

POWER_IN

POWER_IN_2
POWER OUT
POWER OUT 2

)
)

(@CLASS= TWTA FAULTS
(@PROPERTIESZ

AB
AD

CF
COMPONENT

CONFIDENCE

INF_CAT
MB

142

liD

NANE
VERIFIED

)

)

(_CLASS= TWTAS
(_PROPERT !ES=

COHPONENT_I N
CONPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY IN

FREQUENCY-OUT
GAIN

MODEL_GAIN

NOOEL_POt,/ER I N
I,_)DEL POWER OUT
NAME
NASA ID

NONI NAL FREQUENCY

NON] NAL-FREQUENCY_] N

NONINAL FREQUE NCY OUT
NONINAL GAIN
NONINAL POWER IN
NONI HAL-POWER-OUT

POWER_Z_ -
POWER OUT

)
)

(@OBJECT= BER 1
(@CLASSES=

CHI_BERS

BER REGISTERS
)
(_PROPERTIES=

CONPONENT_IN

CONPONENT_OUT
DATA

DESCRIPTION
ERROR

EVALUATED
FREQUENCY

FREQUENCY_IN

FREQUENCY OUT
GAIN
LEVEL

HOOEL_GAIN

NOOEL_POWER_I N
HOOEL_POWER_OUT
NAME

NASA ID
NONINAL

NOMINAL FREQUENCY

NONINAL_FREQUENCY_IN

NONINALFREQUENCY_OUT
NONINAL GAIN

NONINAL POWER_IN
NONINAL POWER OUT

POWER_IN -
POWER OUT
READING

RTN_LEVEL
RTN NOHINAL
RTN-READING

TOLERANCE

TYPE

ZEROLEVEL
)

)

(_OBJECT= BER 2
(gCLASSES=

CH1 BERs

BER-REG ! STERS
)

(@PROPERT I ES=

CONPONENT_I N
CONPONENT_OUT
DATA

DESCR ! PT I ON

ERROR
EVALUATED

FREQUENCY

FREQUENCY_[N

FREQUENCY_OUT
GAIN

LEVEL

MOOEL GAIN
MOOEL_POWER I N

NOOEL POWER_EAJT
NAME
NASA ID

NONINAL

NON] HAL_FREQUENCY
NON[NAL FREQUENCY_IN
NON I NAL-FREQUENCY_OUT
NOMINAL GAIN

NONI NAL-POWER_I N

NONI NAL_POWER_OUT
POWER_I N
POWER OUT
READING

RTN_LEVEL

RTN_NON[NAL
RTN READING
TOLE'RANCE

TYPE

ZERO_LEVEL

)

)

143

(@OBJECT= BER_3
(@CLASSES=

CHI BERs

BER-_REGISTERS

)
(@PROPERT] ES=

COMPONENT_] N
CONPONENT_OUT
DATA

DESCRIPTION
ERROR

EVALUATED
FREQUENCY

FREQUENCY_I N

FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN

MODEL_POWER I N

MODEL_POWER_OUT
N/_E
NASA ID
NONINAL

NONI NAL FREQUENCY
NONINAL FREQUENCY IN

NOt41NAL FREQUENCY_OUT
NOMINAL GAIN

NON [NAL_POWER_] N
NON I NAL_POWE R_OUT

POWER_] N
POWER OUT
READING

RTN LEVEL
RTN_NON] NAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

(@OBJECT= BER_4
(@CLASSES=

CH2BERs

BER REGISTERS
)

(@PROPERTIES=

CONPONENT_!N

CONPONENT_OUT
DATA
DESCRIPTION

ERROR
EVALUATED

FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL

NODEL GAIN

NODEL_POWER!N

MODEL_POWER OUT
NAHE

NASA ID
NONINAL

NOMINAL_FREQUENCY

NONINAL_FREQUENCY_IN
NONINAL_FREQUENCY_OUT

NONINAL_GA!N
NON! NALPOI,/ER_ I N

NON I NAL_POWER OUT
POI,/ERIN
POWER-OUT
READ ING

RTN LEVEL

RTN_-NONI NAL
RTN READING
TOLERANCE

TYPE

ZEROLEVEL
)

)

(@OBJECT= BER_5
(@CLASSES=

CH2_BERs

BER_REGISTERS
)

(@PROPERTIES=

CONPONENT I N

CONPONENT OUT
DATA

DESCRIPTION
ERROR

EVALUATED
FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN
LEVEL

HODEL_GAIN

MODEL_POWER_IN
NODELPO_ER_OUT
NAHE

NASA !D
NON!NAL

NON] NAL FREQUENCY

NON[NAL-FREQUENCY IN

NON] NAL_FREQUENCY OUT
NOMINAL_GAIN

NON] NAL_POMER_I N
NONI NAL_POWER_OUT

POWER_! N
PO_/ER OUT
READING

RTN_LEVEL
RTN_NONI NAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

(@OBJECT= BER_6
(@CLASSES=

CH2 BERs

BER_-REGI STERS
)
(@PROPERTIES=

CONPONENT_IN
CONPONENT_OUT
DATA
DESCRIPTION

ERROR
EVALUATED

FREQUENCY

FREQUENCY_I N
FREQUENCY OUT
GAIN

LEVEL

MODEL GAIN

NODEL POWER_IN
NODEL_POWER_OUT
NANE
NASA [D
NONINAL

I44

NOMINAL FREQUENCY (_OBJECT= CH2AMP

NONINAL_FREQUENCY_IN (_CLASSES=

NONINAL_FREgUENCY_OUT SUBSYSTEMS
NOMINAL_GAIN)

NOMINAL_POWER_IN (_PROPERTIES=
NOMINAL_POWER_OUT DIAGNOSTIC_NOOULE
POWER]N ISOLATED
POWER-OUT LEVEL_IN

READING LEVEL_OUT
RTN LEVEL NAME

RTN-NONINAL READING_IN
RTN-READING READING OUT

TOLERANCE SENSOR _N
TYPE SENSOR_OUT

ZERO_LEVEL)
))

) (_OBJECT= CH2RCVR

(_OBJECT= CH1AMP (@CLASSES=
(_CLASSES= SUBSYSTEMS

SUBSYSTEMS)
) (_PROPERTIES=

(_PROPERTIES= DIAGNOSTIC_MODULE

DIAGNOSTIC_NODULE ISOLATED
ISOLATED LEVEL_IN

LEVEL_IN LEVEL_OUT

LEVEL OUT NAME
NAME READING_IN

READING IN READING OUT
READING-OUT SENSOR_TN

SENSOR TN SENSOR_OUT

SENSOR_OUT)
))

) (_OBJECT= CH2UPX

(_OBJECT= CH1RCVR (_CLASSES=

(_CLASSES= SUBSYSTEMS
SUBSYSTEMS)

) (SPROPERTIES=
(_PROPERTIES= DIAGNOSTIC_NODULE

DIAGNOSTIC_MODULE ISOLATED
ISOLATED LEVEL_IN

LEVEL_IN LEVEL_OUT

LEVEL_OUT NAME
NAME READING_IN

READING IN READING OUT
READING-OUT SENSOR_TN

SENSOR TN SENSOR_OUT
SENSOR_OUT)

))

) (_OBJECT= CURRENT_COHPONENT

(_OBJECT= CH1UPX (_PROPERT[ES=
(_CLASSES= COUPLING

SUBSYSTEMS NAME

))
(@PROPERTIES=)

DIAGNOSTIC_NODULE
ISOLATED (_OBJECT= CURRENT_FAULT

LEVEL_IN (@PROPERTIES=

LEVEL_OUT NAME
NAME)

READING_IN)
READING OUT

SENSOR_.TN (_OBJECT= CURRENT_SENSOR
SENSOR_OUT (_PROPERTIES=

NAME
))

))

(_OBJECT= CURRENT_SUBSYSTEM
(_PROPERTIES=

LEVEL_IN

145

LEVEL OUT
NAHE

READ I NG_I N
READING OUT

SENSOR TN
SENSOR-OUT

)
)

(_OBJECT= Evatuate_CertaintyFactors
(_PROPERTIES=

Value @TYPE=Boolean;
)

)

(_OBJECT= GAASFET

(=CLASSES=
GaAsFETS

)
(_PROPERTIES=

COMPONENT_IN
COHPONENT OUT
DESCRIPTION

DRAIN VOLTAGE
FREQUENCY

FREQUENCY_IN

FREQUENCY_OUT
GAIN
GATE VOLTAGE

HOOE_ GAIN

NODEL_POWER_] N
MODEL_POWER_OUT
NAHE
NASA ID
NOMINAL DRAIN VOLTAGE

NOMINAL,FREQUENCY

NOHINAL FREQUENCY_IN
NOHINAL,FREQUENCY_OUT
NOHINAL GAIN
NOMINAL-GATE VOLTAGE

NON'NAL:PO EL'M
NON,NAL_POWER_ T
POMER_I N

POtq/ER OUT
)

)

(_OBJECT= HPAPC_AHP_I
(aCLASSES=

AMPLIFIERS

)

(_PROPERTIES=

BIAS_CURRENT
BIAS VOLTAGE

COHPONENT_I N
COMPONENT OUT

DESCRIPTION
DRAIN VOLTAGE
FREQUENCY

FREQUENCY IN
FREQUENCY_OUT
GAIN
GATE VOLTAGE

NODE_. GAIN

NODEL POWER IN
MODEL PO_/ER_OUT
MANE

NASA ID

NOf4INAL_BIAS_CURRENT
NOHINAL BIAS VOLTAGE

NOMINAL-DRAIN VOLTAGE

NOMINAL,FREQUENCY

NOMINAL_FREQUENCY_IN

NON[NAL_FREQUENCY_OUT

NOHI NAL_GA I N
NOHINAL GATE VOLTAGE

NONINAL:P LIN
NOHINAL POWER OUT

POWERli -
POWER_OUT

(_OBJECT= HPAPC AMP 2

(_CLASSES=
AMPL I F I ERS

)
(_PROPER T I ES=

BIAS_CURRENT
BIAS VOLTAGE

COt4PONENT_I N
COMPONENT OUT
DESCR I PT 1ON

DRAIN VOLTAGE
FREQUE'NCY

FREQUENCY IN

FREQUENCY-OUT
GAIN
GATE VOLTAGE

NODE[GAIN

NODE L-POWER_ 1N

HODEL_POWER_OUT
NAME
NASA ID

NOHINAL BI AS CURRENT
NOHINAL BIAS VOLTAGE

NONI NAL'DRA I N_VOL TAGE

NOHI NAL_FREQUENCY
NON] NAL_F REQUENCY_] N

NON] NAL_FRE_UENCY_OUT
NONINAL_GAIN
NOHINAL GATE VOLTAGE

NOHI NAL,POWER_[N

NONI NAL_POWER_OUT
POt,/ER_IN

POWER_OUT
)

)

(_OBJECT= HPAPC._ATTN_I
(@CLASSES=

ATTENUATORS

)
(_PROPERTIES=

COMPONENT_IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN

MODEL_GAIN
MODEL_POWER_IN
MODEL POWER OUT

MODEL,SETTING
NAME
NASA ID

NOMINAL_FREQUENCY

NOMINAL_FREQUENCY_IN
NOMINAL_FREQUENCY_OUT

NOMINAL_GAIN
NOMINAL POWER IN

NON] NAL'POWER'OUT
NOMINAL SETTING

POWER_IN

PO_ER_OUT

146

SETT I NG

SETT I NG_ERROR
)

)

(_OBJECT= HPAPC_ATTN_2
(_CLASSES=

ATTENUATORS

)
(_PROPERT I ES=

CONPONENT_I N
CC_PONENT OUT
DESCRIPTI_I

FREQUENCY

FREQUENCY_| N
FREQUENCY_OUT
GAIN

HODEL_GAI N

NOOEL_PC_ER_I N
MODEL POWER OUT

MODEL-SETT ING
NAME

NASA ID

NOHINAL_FREQUENCY

NONI NAL_FREQUENCY_I N

NONI NAL_FREQUENCY_OUT
NONINAL_GA|N

NOHI NAL_POWER_I N

NON] NAL POWER_OUT
NONI NAL SETTING

POWER |N
POkER-OUT

SETTING

SETT I NG_ERROR
)

)

(_OBJECT= HPAPC,,_ATT N_3
(_CLASSES=

ATTENUATORS

)
(_oROPERT I ES=

CONPONENT_| N
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN
FREQUENCY OUT
GAIN

MODEL_GAIN

NOOEL_POWER_I N
MOOEL POWER OUT

MOOEL-SETT ING
NAHE

NASA ID

NON| NAL_FREOUENCY

NONI NAL_FREQUENCY I N
NOHI NAL_FREQUENCY_OUT

NOMINAL_GAIN

NONI NAL_POWER_! N
NONI NAL_POWE R_OUT
NOMINAL SETTING

POWER_IN
POWER OUT
SETTING

SETTING_ERROR
)

(_OBJECT= HPAPC_ATTN_4
(@CLASSES=

ATTENUATORS

)

(_PROPERT I ES=

CONPONENT_I N
COMPONENT OUT
DESCRIPTI_

FREQUENCY

FREQUENCY_I N

FREQUENCY OUT
CA] N

MODEL_GAIN
NODEL_POt,_ER_I N

NODEL_POWER_OUT
MODEL_SETT | NG
NAME

NASA ID

NON [NAL_FREQUENCY
NOMINAL FREQUENCY IN

NONI NAL-FREQUENCY-OUT

NONI NAL_GAI N
NONINAL_POUER_IN
NOMINAL POWER OUT

NONI NAL-SETT ING

POUER_I_
PO_/ER OUT
SETTING

SETT I NG_ERRON
)

)

(_OBJECT= IFPC AMP 1
(@CLASSES=

AHPLIFIERS

)
(@PROPERTIES=

BIAS_CURRENT
BIAS VOLTAGE

COMPONENT_IN
COMPONENT OUT
DESCRIPTION

DRAIN VOLTAGE
FREQUENCY

FREQUENCY_IN
FREQUENCY OUT
GAIN

GATE VOLTAGE

NODE_._GAI N

NODEL_POWER_I N

NODEL_POI,/ER_OUT
NAME

NASA ID

NOMINAL_BIAS_CURRENT
NOMINAL BIAS VOLTAGE
NON|NAL-DRAIN VOLTAGE
NOMINAL-FREQUENCY

NONINALZFREO4JENCY_IN

NOMINAL_FREQUENCY OUT

NOMINAL_GAIN
NOMINAL GATE VOLTAGE

NON INAL_POWER._I N

NON! HAL_POWER_OUT
POWER_I N

POWER_OUT
)

)

147

(_K)BJECT= IFPC AMP 2

(_CLASSES=
AMPLIFIERS

)
(_)PROPERT I ES=

B IAS_CURRENT
BIAS VOLTAGE

COMPONENT [N
COMPONENT OUT
DESCRIPTION

DRAIN VOLTAGE
FREQUE"NCY

FREQUENCY IN
FREQUENCY OUT
GAIN

GATE_VOLTAGE

MODEL_GAI N
NODEL_POWER_] N

MODEL POWER_OUT
NAME
NASA]D

NOHINAL_B I AS_CURRENT
NOMINAL BIAS VOLTAGE
NON] HAL-DRAIN VOLTAGE

NOHI HAL-FREQUENCY

iO141NAL_FREQUENCY_I N

NOHI HAL_FREQUENCY_OUT
NOHINAL_GAI N
NOMINAL GATE VOLTAGE

NON I NAL-POWER_.I N

NGNI NAL_PO_ER_OUT

POWER_IN
POgER OUT

)
)

(_OBJECT= IFPC AMP]

(:aCLASSES=
AMPLIFIERS

)

(_PROPERT IES=

BIAS_CURRENT
BIAS VOLTAGE

CONPONENT_I N
COMPONENT OUT
DESCRIPTION

DRAIN VOLTAGE
FREQUE'NCY

FREOUENCY_I N
FREQUENCY_OUT
GAIN

GATE VOLTAGE

HODE_..GA I N

MODEL POI,/ER_IN

MODEL_POWER OUT
NAME

NASA ID

NO#4INAL_B I AS_CURRENT
NOMINAL BIAS VOLTAGE
NONI NAL-DRAIN VOLTAGE

NON] NAL_-FREQUENCY

NON] NAL_FREOUENCY_I N

NONI NAL_FREQUE NCY_OUT
NOMINAL GAIN
NOMINAL GATE VOLTAGE

NON I NALZPOWER_I N

NONI NAL_POtdER_OUT

POWER IN
POWER OUT

)
)

(_OBJECT= IFPC AMP k

(@CLASSES=
AMPLIFIERS

)
(@PROPERTIES=

BIAS CURRENT
BIAS VOLTAGE
COMPONENT IN
COMPONENT-OUT

DESCRIPTION

DRAIN VOLTAGE
FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN

GATE VOLTAGE

MODE_ GAIN

MODEL POWER_I N

MODEL_POWER_OUT
NAME
NASA ID

NOMINAL_BIAS_CURRENT
NOHINAL BIAS VOLTAGE
NOHINAL-DRAIN VOLTAGE

NONINAL_FREQUENCY

NOMINAL_FREQUENCY_IN

NOH]NAL_FREQUENCYOUT
NOMINAL_GAIN
NO#41NAL GATE VOLTAGE

NONI NALZPOWER_I N

NOHI NAL POWER_OUT

POWER_I N
POWER_OUT

)

)

(_OBJECT=]FPC_.ATTN1
(_CLASSES=

ATTENUATORS

)

(_PROPERTZES=

COMPONENT IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN
FREQUENCY OUT

GAIN

MODEL_GAIN
MOOEL_POWER_IN
MODEL POWER OUT
MODEL-SETT ING

NAME
NASA ID

NOMINAL_FREQUENCY

NOHINAL FREQUENCY IN

NOMINAL_FREQUENCY_OUT
NOMINAL_GAIN

NOMINAL_POWER IN
NOMINAL POWER OUT
NOHINAL-SETTING

POWER_IN
POWER OUT
SETTING

SETTING_ERROR
)

)

148

(_OBJECT= I FPC .ATTN_2
(gCLASSES=

ATTENUATORS

)
(_PROPERT I ES=

COHPONENT_I N
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_] N

FREQUENCY_OUT
GAIN

NODEL_GAIN

ldODEL POWER_[N
MODEL POWER OUT

NODEL-SETT ING
NAME
NASA]D

NOMI NAL FREQUENCY

NOMINAL FREQUENCY_I N
NON]NAL_FREQUENCY_OUT

NOMINALGAIN

NON INAL POWER_I N

NOMINALPOWER_OUT

NOMINAL SETTING

POWER_IN
POWER OUT
SETTING

SETT I NG_ERROR
)

)

(_OBJECT= IFPC_ATTN_3
(_CLASSES=

ATTENUATORS

)

(_PROPERTIES=

COMPONENT_IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY IN

FREQUENCY_OUT
GAIN

MOOEL_GAIN
MODEL_POWER IN
NODEL POWER OUT

NOOEL--SETTING
NAME

NASA ID
NOMINAL FREQUENCY

NOMINAL_FREQUENCY_IN

NOMINAL_FREQUENCY_OUT

NOMINALGAIN

NOMINAL_POWER_IN
NOMINAL POWER OUT

NOMINAL-SETTING

POWER_IN

POWER OUT

SETTING

SETTINGERROR
)

)

(_OBJECT= I FPC._ATTN._4
(_CLASSES=

ATTENUATORS

)
(_oROPERTIES=

COMPONENT IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_I N
FREQUENCY OUT
GAIN

MODELGAIN
MODEL_POWER_IN
MODEL POWER OUT

MOOEL-SETT ING
NAME
NASA ID

NON] NAL FREQUENCY

NOMINAL FREOUENCY IN
NON I NAL_FREQUENCY OLIT

NON[NAL_GA] N

NONI NAL_POWER_i N
NOMINAL POWER OUT
NON! NAL-SETT ING

POt_ER_IN
POWER OUT

SETTING

SETTING ERROR

(_OBJECT= ModeL Matrix Switch_SubSystem
(_PROPERTIES=

Vatue @TYPE=Boolean;
)

)

(_OBJECT= NSWITCH

(@CLASSES=
SWITCHES

)
(@PROPERT I ES=

COMPONENT_I N
COMPONENT IN_2

COMPONENT OUT
COMPONENT OUT 2
CONFIG

DESCRIPTION
FREQUENCY

FREQUENCY 2

FREQUENCY IN
FREQUENCY_] N_2

FREQUENCY OUT
FREQUENCY_OUT_2
GAIN
GAIN 2

NOD E_..GA IN

NOD EL_GA IN_2

MODEL_POWER_I N

MODEL_POWER_I N_2

MOOELPOWER_OUT

MODEL_POWER OUT 2

NAME

NASA ID

NON INAL_FREQUE NCY

NON INAL_F REQUENCY_Z
NOMINAL FREQUENCY IN

NON] NAL-FREQUENCY-IN2

NOMINAL FREQUENCY OUT

NOMINAL-FREQUENCY-OUT 2
NOMINAL GAIN

NOM] NAL-POWER] N

NOMINAL POWER_I N_; _
NOMI NAL-POWEROUT
NOMINAL POt_ER OUT 2

POWER_IN

POWER_] N_2

POWER_OUT
POWER OUT 2

)
)

149

(_OBJECT= MSWI TCH_CH11
(_PROPERT I ES=

DI AGNOST I C_MODULE
]SOLATED

LEVEL IN
LEVEL OUT
NAME

READ I NGI N
READ I NG OUT

SENSOR TN
SENSOR OUT

)
)

(_OBJECT= MSWITCH_CH12
(_PROPERTIES=

DIAGNOSTIC_NODULE
ISOLATED

LEVEL_IN

LEVEL_OUT
NAME

READING_IN
READING OUT

SENSOR_TN
SENSOR OUT

)

)

(@08JECT= NSWITCH_CH21
(_PROPERTIES=

DIAGNOSTIC_MODULE
ISOLATED

LEVEL_IN
LEVEL OUT
NAME

READING_IN
READING OUT

SENSOR_TN

SENSOR_OUT
)

)

(@OBJECT= MSWITCH_CH22
(@PROPERTIES=

DI AGNOST I C NODULE
1SOLATED

LEVEL IN

LEVEL_OUT
NAME

READING_IN
READING OUT

SENSOR_TN
SENSOR OUT

)
)

(_OBJECT= MULT_I
(@CLASSES=

MIXERS

)

(_PROPERTIES=

COMPONENT IN
COMPONENT OUT
DESCRIPTION

FREQUENCY

FREQUENCY_IN

FREQUENCY OUT
GAIN

LOINPUT_FREQUENCY
LO_INPUT_POWER
LO UNIT

MOOEL_GAIN

NOOEL_POI, IER_IN

MODEL POWER OUT
NAME

NASA ID

NOMINAL FREQUENCY

NOMINAL FREQUENCY IN

NOMINACFREQUENCY-OUT

NOMINALGAIN

NOMINAL_LO_INPUT_FREQUENCY
NOMINAL LO INPUT_POWER

NOMINAL_POWER_IN
NOMINALPOWER_OUT

POWER_IN
POWER_OUT

)

(_OBJECT= NULT_2
(@CLASSES=

MIXERS

)

(@PROPERTIES=

COMPONENT IN
COMPONENT OUT
DESCRIPTION

FREQUENCY
FREQUENCY IN

FREQUENCY_OUT
GAIN

LO,_INPUT_FREQUENCY

LOINPUT_POWER
LO UNIT

MO(_EL_GAIN
MODEL POWER IN

MOOELZPOWER_OUT
NAME
NASA ID

NOM]NAL FREQUENCY

NOMINAL_FREQUENCY_IN
NOMINAL FREQUENCYOUT
NOMINAL_GAIN

NOMINAL_LO_INPUT_FREQUENCY

NOMINAL LO_INPUT_POWER
NOMINAL_POWER_IN

NOMINAL_POWER_OUT
POWER_IN
POWER OUT

)
)

(@OBJECT= PM 0

(@PROPERTIES=

LEVEL

NAME

READING

)

)

(@OBJECT= PM1
(@CLASSES=

POWER METERS

PgR_SENSORS
)

(_PROPERTIES=

COMPONENT_IN

COMPONENT_OUT
DATA
DESCRIPTION

ERROR
EVALUATED

FREQUENCY

FREQUENCY IN
FREQUENCY OUT
GAIN

150

LEVEL

MOOEL _IN

I_DEL POWER_I N

MODEL POWER_OUT
NAME
NASA [D
NOMINAL

NOHI NAL_FREQUENCY

NON l NAL_FREQUENCY_I N
NONI NAL_FREQUENCY_OUT

NOMINAL_GAIN

NONI NAL_POt,/ER_I N
NONI NAL_POWER_OUT

POWER_I N
POWER OUT
READ I NG

RTN_LEVEL

RTN_NOH I NAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
)

)

(@OBJECT= PM_2
(@CLASSES=

POWER METERS

PWR_S[NSORS
)

(@PROPERTIES=

COMPONENT IN

COMPONENT OUT
DATA

DESCRIPTION
ERROR

EVALUATED
FREQUENCY

FREQUENCY IN

FREQUENCY_OUT
GAIN
LEVEL

MODEL GAIN

MODEL_POWER_IN

NOOELPOWER_OUT
NAME

NASA ID
NOMINAL
NOMINAL_FREQUENCY

NONINAL_FREOUENCY_IN
NOMINAL_FREQUENCY_OUT

NONi NAL_GA I N
NONI NAL_PO_E R_I N

NON I NAL_POW'ER_OUT
POWER I N
POWER OUT

READING

RTN_LEVEL

RTN_NONINAL
RTN READING

TOL[RANCE

TYPE

ZERO_LEVEL
)

)

(@OBJECT= PM 3
(@CLASSES=

POWER METERS

PWR_SENSORS
)
(@PROPERTIES=

COMPONENT_IN

COMPONENT_OUT
DATA

DESCR] PT I ON
ERROR

EVALUATED
FREQUENCY

FREQUENCY_I N

FREQUENCY_OUT
GAIN
LEVEL

MODEL_GAI N

MODEL_PO_,/ER_I N
MODEL_PO_ER_OUT
NAME

NASA ID
NOMINAL

NONI NAL_FREQUENCY

NOMINAL FREQUENCY IN

NOM] NAL_FREQUENCY OUT
NOMINAL_GAIN

NO#41NAL_POWER_I N
NOHI NAL POWER_OUT

PO_/ER_ IN
POWER OUT
READ I NG

RTN_LEVEL

RTN_NOMI NAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL

(@OBJECT= PM_6
(@CLASSES=

POWER METERS

PWR_SE'NSORS

)

(@PROPERT I ES=

COMPONENT_I N

COMPONENT_OUT
DATA
DESCR I PT I ON

ERROR
EVALUATED

FREQUENCY

FREQUENCY_I N
FREQUENCY OUT
GAIN

LEVEL

MODEL GAIN
MODEL_POWER I N

MODEL_POt#ER OUT
NAME
NASA [D

NOMINAL

NOMI NAL FREQUENCY

NOH I NAL_FREQUENCY_I N
NON I NAL_FREQUENCY_OUT

NOMINAL GAIN
NONI NAL_POWE R_I N

NONI NAL_POWER_OUT
POWER_I N
POWER OUT
READING

RTN_LEVEL
RT N_NON I NAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL
))

151

(i_OBJECT= PN_5
(gCLASSES=

POWER METERS

PWR_S[NSORS
)
(_PROPERT I ES=

COMPONENT IN

COMPONENT-OUT
DATA
DESCR I PT I ON

ERROR
EVALUATED

FREQUENCY

FREQUENCY_! N

FREQUENCY_OUT
GAIN
LEVEL

NOOEL_GAIN
NOOEL POWER IN

MODEL-POWER-OUT
NAME

NASA ID
NONINAL

NOMI NAL_FREQUENCY

NOM INAL_FREQUENCY_I N

NON INAL FREQUEN CY_OUT
NOMINAL GAIN

NOMINAL-POWER_I N

NOMINAL POWER_OUT

Powee_I_
POWER OUT
READIiG

RTN_LEVEL
RTN_NOMINAL
RTN READING
TOL[RANCE

TYPE

ZEROLEVEL
)

)

(_OBJECT= PH_6
(gCLASSES=

POWER METERS

PWR_S[NSORS
)

(_PROPERT I ES=

COMPONENT_IN

COMPONENT_OUT
DATA
DESCR I PT I ON

ERROR
EVALUATED

FREQUENCY

FREQUENCY_I N

FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN

MODEL_POWER_I N

MODEL_POWER_OUT
NAME

NASA ID

NOMINAL

NOMINAL_FREQUENCY

NON INAL_FREQUENCY_I N

NON INAL_FREOUENCY_OUT

NOM INAL_GA IN

NOM INAL_POWER_ IN

NON INAL_POWE R_OUT

POWER IN
POWER-OUT

READ ! NG

RTN_LEVEL

RTN_NOMINAL
RTN READING
TOL[RANCE

TYPE

ZERO_LEVEL
)

)

(_OBJECT= PM 7
(@CLASSES=-

POWER METERS

PWR_SENSORS
)

(_PROPERT I ES=

CONPONENT_I N

COMPONENT_OUT
DATA

DESCRIPTION
ERROR

EVALUATED
FREQUENCY

FREQUENCY IN
FREQUENCY OUT
GAIN
LEVEL

MODEL_GAi N

MODEL_POWER_I N
MODEL_POWER_OUT
NAME

NASA ID
NOM[NAL

NONI NAL FREQUENCY

NONI NAL FREQUENCY_I N
NOM] NAL_FREQUENCY_OUT

NOMI NAL_GA I N
NOMINALPOWERIN
NOM INAL-POWER-OUT

POWER_IN
POWER OUT

READING

RTN LEVEL

RTN-NOM I NAL
RTN-READING

TOLERANCE

TYPE

ZERO_LEVEL
)

)

(_OBJECT= PM8
(@CLASSES=

POWER METERS
PWR SENSORS

)
(@PROPERTIES=

COMPONENT_IN
COMPONENT_OUT
DATA
DESCRIPTION

ERROR
EVALUATED

FREQUENCY

FREQUENCY_IN

FREQUENCY_OUT
GAIN

LEVEL

MODEL_GAIN

HODE L_POWER_ I N
MODEL_POWER_OUT
NAME
NASA ID
NOMINAL

152

NONI NAL FREQUENCY
NONI NAL FREQUENCY_I N

NOel! NAL FREQUENCY_OUT
NOMINALGAIN

NOI41NAL POWER_ I N
NONI NAL PONE R_OUT

PO_/ER_IN
POMER OUT
READING

RTN LEVEL

RTN NONINAL
RTN READING
TOLERANCE

TYPE

ZERO_LEVEL

)

(@OBJECT= RCVR_I
(_CLASSES=

RECEIVERS

)

(_°ROPERT] ES=

CONPONENT_] N
COMPONENT OUT
DESCRIPT ION

FREQUENCY

FREQUENCY_IN

FREQUENCY_OUT
GAIN

LO_I NPUT_FREQUENCY
LO_] NPUT_POMER
LO UNIT

14OOEL_GA I N

MODEL_POWER_I N
NO0 EL_POWER_OUT
NAME
NASA ID

NOMINAL_FREQUENCY
NONI NAL_FREQUENCY_I N

NON] NAL_FREQUENCY_OUT
NON I NAL_GA I N

NON[NAL_LO_I NPUT FREQUENCY
NONI NAL_LO_I NPUT-POWER

NOHI NAL_POWER_I N-

NONI NA L_POIJER_OUT
POWER IN

POWER-OUT

)
)

(@OBJECT= RCVR_2
(@CLASSES=

RECEIVERS

)
(@PROPERT] ES=

COMPONENT IN
COMPONENT-OUT

DESCR] PT I_N

FREQUENCY

FREQUENCY_IN
FREQUENCY_OUT
GAIN

LO_I NPUT_FREQUENCY

LO_I NPUT_POWER
LO UNIT
NOi'_eL GAIN

NODEL-POWER_I N

MOOEL_POtq/ER OUT
NAME
NASA ID

NOHINAL_FREQUENCY

NONI NAL_FREQUENCY_I N

NONI NAL FREQUENCY (XJT
NONI NAL_GA I N

NON! NAL_LO_ I NPUT_FREQAJENCY
NONI NAL_LO_I NPUT_POWER

NOHI NAL_POWER_I N
NONI NAL_PO_,/ER_OUT

POWER_ I N
POWER_OUT

(@OBJECT= RCVR_LO
(@CLASSES=

LOCAL_OSCILLATORS
)
(@PROPERTIES=

COMPONENT IN

CONPONENT-_OUT
COMPONENT OUT 2
DESCRIPTION

FREQUENCY

FREQUENCY_IN

FREQUENCY OUT
FREQUENCY_OUT_2
GAIN

MODEL_GAIN

MODEL_POWER_IN
NODEL_POWER_OUT
NAME
NASA ID

NOMINAL_FREQUENCY
NOMINAL_FREQUENCY_IN

NOMINAL_FREQUENCY_OUT
NOMINAL_FREQUENCY OUT 2

NOMINAL_GAIN
NONi NAL_POWER_I N

NONi NAL_POWER_OUT
NGHINAL PO_/ER OUT 2

POWER_IN

POUER_OUT
POWER OUT 2

)

)

(@OBJECT= ReturnBADSensors
(@PROPERTIES=

VaLue @TYPE=BooLean;
)

)

(@OBJECT= Return_Nominal_Sensor..Oata
(@PROPERTIES=

VaLue @TYPE=Bootean;
)

)

(_)BJECT= Sensor_Leve L_Descr i pt i on
(@PROPERTIES=

HIGH

LOW
OK
ZERO

)
)

(@OBJECT= Sensor_Readi ng_Descr Jpt ion
(@PROPERTIES=

BAD

GO00
)

)

153

(_)BJECT= TBK_Request
(@PROPERTIES=

Bad Sensors

NomT_ t_Sensor..Data
)

)

(i_OBJECT= T_rA

(@CLASSES=
TWTAS

)
(@PROPERTIES=

COHPONENT_IN
COMPONENT OUT

DESCRIPTION

FREQUENCY

FREQUENCY IN
FREQUENCY_OUT
GAIN

MOOEL_GAIN

MOOELPO$,rER_IN
NOOELPO_/ER_OUT
NAME

NASA)D

NOH1NAL_FREQUENCY

NOHINAL_FREQUENCY_IN

NOMINAL_FREQUENCY_OUT

NOMINAL_GAIN
NOMINAL_POWER_IN

NOMINAL_POWER_OUT
POWER_I N

POWER OUT
)

(@OBJECT= UPX_LO
(@CLASSES:

LOCAL_OSCILLATORS
)

(_:_ROPERTIES=

COMPONENT IN

COMPONENT OUT

COMPONENT OUT_2
DESCRIPTION

FREQUENCY

FREQUENCY IN
FREQUENCY OUT

FREQUENCY_OUT2

GAIN

MOOELGAIN

HOOELPC_/ER_IN
NODELPO_/ER_OUT
NAME

NASA ID
NOHINAL FREQUENCY

NOMINALZFREQUENCY_IN

NOMINAL_FREQUENCY_OUT
NONINAL_FREQUENCY OUT 2

NONINAL_GAIN
NONINAL_POWERIN
NOMINAL POWER OUT
NOMINAL-POWER-OUT 2

POWERI_
PO_JER OUT
PO_/ER OUT 2

)
)

(@SLOT= BER SENSORS.TYPE

(@INITVAL= "BER")

(@SOURCES=

(RunTimeVa[ue
)

)

("BER"))

154

155

(@SLOT= CERTAINTY ANALYSIS.AB
(@INITVAL= _0)
(@SOURCES=

(RunTimeVatue (0.0))
)
(@CACTIONS=

(Do ((SELF.AB-SELF.AD)/MIN(SELF.AB,SELF.AD))
)

)

(SELF.CF))

(@SLOT= CERTAINTY ANALYSIS.AD
(@INITVAL= 0_0)
(@SOURCES=

(RunTimeVatue (0.0))
)
(@CACTIONS=

(Do ((SELF.AB-SELF.AD)/M]N(SELF.AB,SELFoAD))
)

)

(SELF.CF))

(@SLOT= CERTAINTY ANALYSIS.CF
(@INITVAL= _0)
(@SOURCES=

(RunTimeVaLue (0.0))
)
(@CACTIONS=

(Do (SELF.NAHE) (CURRENT FAULT.NAME))
(Reset (EvaLuate_Certainty_Factors))
(Do (EvaLuate_Certainty_Factors) (EvaLuate_Certainty_Factors))

)
)

(@SLOT= CERTAINTY ANALYSIS.MB
(@INITVAL= 0_0)
(@SOURCES=

(RunTimeVatue (0.0))
)
(aCACTIONS=

(Do (SELF.AB+SELF.MB*(I-SELF.AB))
(Reset (SELF.M8))

)
)

(SELF.AB))

(@SLOT= CERTAINTY ANALYSIS.MD
(@INITVAL= 0_0)
(@SOURCES=

(RunTimeVatue (0.0))
)
(@CACTIONS=

(Do (SELF.AD+SELF.MDW(I'SELF.AD))
(Reset (SELF.MD))

)
)

(SELF.AD))

(@SLOT= COMPONENTS.GAIN
(@SOURCES=

(Do (SELF.POWER_OUT-SELF.POWERIN) (SELF.GAIN))
)
(@CACTIONS=

(Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT))
)

)

(@SLOT= COMPONENTS.MODEL_GAIN
(@SOURCES=

(Do (SELF.MOOEL_POWER_OUT-SELF.MODEL_POWER_IN) (SELF.MOOEL_GAIN))
)
(@CACTIONS=

(Do (SELF.MOOEL_POWER_IN+SELF.MOOEL_GAIN) (SELF.MODEL_POWER OUT))
)

)

156

(@SLOT = COMPONENTS.MODEL_POWER_IN
(@SOURCES=

(Do (\SELF.CONPONENT_IN\.MODELPOWER_OUT)
)

(@CACTIONS=

(Do (SEL F.HOOEL_POWER_I N+SEL F .MOOEL_GA [N)
)

)

(SELF.MODEL_POWER_IN))

(SELF.MODELPO_/ER_OUT))

(@SLOT= CONPONENTS.MODEL_POtgER_OUT
(@SOURCES=

(Do (SELF.MOOELPOWER_IN+SELF.MOOEL_GAIN) (SELF.MOOELPO_ER_OUT))
)
(@CACTIONS=

(Do (SELF.MOOEL_POWER_QUT) (\SELF.CONPONENTOUT\.MODELPOWER_IN))
)

)

(@SLOT= COMPONENTS.POblER_IN
(@SOURCES=

(Do (\SELF.C_4PONENT_IN\.POgER_OUT) (SELF.POgER_IN))
)
(@CACTIORS=

(Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT))
)

)

(@SLOT= CONPONENTS.POWER OUT
(@SOURCES=

(Do (SELF.POWER_IN+SELF.GAIN) (SELF.POWER_OUT))
)
(@CACTIONS=

(Do (SELF.POWER OUT) (\SELF.COHPONENT_OUT\.PO_ER]N))
)

)

(@SLOT= PWR_SENSORS.TYPE
(@INITVAL= "PM")

(@SOURCES=
(RunTimeVatue

)
)

("PN"))

(@SLOT= SENSORS.DATA

(@CACTIONS=
(Reset (SELF.ERROR))

(Reset (SELF.READ]NG))
(Reset (SELF.LEVEL))

(Do (SELF.ERROR) (SELF.ERROR))
(Do (SELF.READING) (SELF.READING))

(Do (SELF.LEVEL) (SELF.LEVEL))
)

)

(@SLOT= SENSORS.ERROR

(@SOURCES=
(DO (SELF.DATA-SELF.NOMINAL) (SELF.ERROR))

)

)

(@SLOT= SENSORS.LEVEL

(@SOURCES=
(Do (SELF.NANE) (CURRENT SENSOR.NANE))

(Reset (Sensor_LeveL_.De_cription.ZERO))

(Do (Sensor Lever_Description.ZERO) (Sensor_LeveL_Description.ZERO))

(Reset (Sensor_LeveL_Description.LOg))
(Do (Sensor LeveL_Description.Log) (Sensor_LeveL_Description.LOg))

(Reset (Sensor_LeveL_Description.HIGH))
(Do (Sensor LeveL_Description.HIGH) (Sensor LeveL_Description.HIGH))
(Reset (Sensor Level Description.OK))

(Do (Sensor_Lever_DesCription.OK) (Sensor_LeveL_Description.OK))
)

(@CACTIONS=

157

))

)

(Execute

)

('ReturnSensorLeve l') (@ATOMID=SELF;@STRING="@V(@SELF.LEVEL)'; \

(@SLOT= SENSORS.NAHE
(@SOURCES=

(Retrieve ("SENSOR.nxp') (@TYPE=NXPDB;@FMRD=FALSE;_UNKNITAN=TRUE;@PROPS=NANE,\
NONINAL,TOLERANCE,ZERO_LEVEL;@FIELDS='NAME',\
.NONINAL.,.TOLERANCE','ZERO_LEVEL";_ATONS=SELF;\
))

)
)

(@SLOT= SENSORS.NOMINAL
(@SOURCES=

(Retrieve ("SENSOR.nxp") (@TYPE=NXPDB;@FWRD=FALSE;@UNKNO_IN=TRUE;@PROPS=NAME,\
NOMINAL,TOLERANCE0ZEROLEVEL;@FIELDS="NAME',\
,NOMINAL,'o"TOLERANCE'°"ZEROLEVEL";@ATOMS=SELF;\
))

)
(@CACTIONS=

(Execute ("ReturnNominaIData") (@ATOMID=SELF;@STR|NG='@V(@SELF.NOMINAL)';\
))

)
)

(@SLOT= SENSORS.READING
(@SOURCES=

(Do (SELF.NAME) (CURRENT SENSOR.NAME))
(Reset (Sensor_Reading_Description.BAD))
(Do (Sensor_Reading_Description.BAD) (Sensor_Reading_Description.BAD))
(Reset (Sensor_Reading_Description.GOOD))
(Do (Sensor_Reading_Description.G000) (Sensor_Reading_Description.GOOD))

)
(@CACTIONS=

(Execute ("ReturnSensorReading") (@ATOMID=SELF;@STRING='@V(@SELF.READING)";\
))

)

(@SLOT= SENSORS.RTN_LEVEL
(@CACTIONS=

(Execute ("ReturnSensorLevel")
))

)
)

(@ATOMID=SELF;@STRING="@V(@SELF.LEVEL)";\

(@SLOT= SENSORS.RTN_NOMINAL
(@CACT|ONS=

(Execute ("ReturnNominatData")
))

)
)

(@ATOMID=SELF;@STRING="@V(@SELF.NOMINAL)";\

(@SLOT= SENSORS.RTN_READING
(@CACTIONS=

(Execute ("ReturnSensorReading")
))

)
)

(@ATOMID=SELF;@STRING="@V(@SEL F.READING)";\

(@SLOT= SENSORS.TOLERANCE
(@SOURCES=

(Retrieve ("SENSOR.nxp") (@TYPE=NXPDB;@FWRD=FALSE;@UNKNOWN=TRUE;@PROPS=NANE,\
NOMINAL,TOLERANCE,ZERO_LEVEL;@FIELDS="NAME",\
.NOM|NAL,,,"TOLERANCE",'ZERO_LEVEL";@ATOMS=SELF;\
))

)
)

(@SLOT= SENSORS.ZERO_LEVEL
(@SOURCES=

(Retrieve ("SENSOR.nxp") (@TYPE=NXPDB;@FWRD=FALSE;_JNKNOWN=TRUE;@PROPS=MANE,\
NONINAL,TOLERANCE,ZERO_LEVEL;@FIELDS="NAHE",\
"NOMINAL","TOLERANCE",_'ZERO_LEVEL";@ATO$1S=SELF;\
))

)
)

(@SLOT= SUBSYSTEMS.ISOLATED
(@CACTIONS=

(Execute ("ReturnIsotation")
)

)

(@ATONI D=SELF;@STR! NG="@V(@SELF.NAME)";))

(@SLOT= SUBSYSTEMS.LEVEL_IN
(@SOURCES=

(Do (\SELF.SENSOR_INS.LEVEL) (SELF.LEVEL_IN))
)

)

(@SLOT= SUBSYSTEMS.LEVEL_OUT
(@SOURCES=

(Do (\SELF.SENSOR_OUT\.LEVEL)
)

)

(SELF.LEVEL_OUT))

(@SLOT= SUBSYSTEMS.READINGIN
(@SOURCES=

(Do (\SELF.SENSOR_|N\.READING)
)

)

(SELF.READING_IN))

(@SLOT= SUBSYSTEMS.READINGOUT
(@SOURCES=

(Do (\SELF.SENSOR_OUT\.READING)
)

)

(SELF.READING_OUT))

(@SLOT= SWITCHES.GAIN_2
(@SOURCES=

(Do (SELF.POt,IER OUT 2-SELF.POWER_IN_2) (SELF.GAIN_2))
)
(_ACTIONS=

(Do (SELF.POWER_IN2+SELF.GA]N_2) (SELF.POWER OUT2))
)

)

(@SLOT= SWITCHES.HODEL_GAIN_2
(@SOURCES=

(Do (SELF.MOOEL_POtJEROUT 2-SELF.MOOEL_POt4ER_IN_2) (SELF.MODEL_GAIN_2))
)
(@CACTIONS=

(Do (SELF.MOOEL_POWERIN 2+SELF.MODELGAIN_2) (SELF.MOOEL_POWEROUT 2))
)

)

(@SLOT= BER 1.NAHE
(@INITVAL= "BER_I")
(@SOURCES=

(RunTimeValue
)

)

("BER_I"))

(@SLOT= BER 2.NAME
(@INITVAL= "BER_2")
(@SOURCES=

(RunTimeValue ("BER_2"))
)

)

158

(@SLOT= BER_3.NANE

(@INITVAL= "BER 3")
(@SOURCES=

(RunTimeVaIue

)
)

("BER_3"))

(@SLOT= BER 4.NANE

(@INITVAL= "BER4")
(@SOURCES=

(RunTimeVaLue

)

)

("BER_4"))

(@SLOT= BER 5.MANE

(@IMITVAL= "BER_5")
(@SOURCES=

(RunTimeVaLue

)
)

("BER 5"))

(@SLOT= BER_6.NANE

(@IMITVAL= "BER 6")
(@SOURCES=

(RunTirneVatue

)
)

("BER 6"))

(@SLOT= CH1ANP.D|AGNOSTIC,,_NOOULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTJrneVaLue (FALSE))

)
(@CACTIONS=

(LoadKB ("CHIANP.tkb") (@LEVEL=ENABLE;))
)

(@SLOT= CH1ANP.NAHE

(@IMITVAL= "CH1AHP")
(@SOURCES=

(RunTimeVatue ("CH1AHP"))

)
)

(@SLOT= CH1ANP.SENSOR IN

(@INITVAL= "PN_5 X')
(@SOURCES=

(RunTimeVatue
)

)

("PM_5"))

(@SLOT= CHIAMP.SENSOR OUT

(@INITVAL= "PM_7";')
(@SOURCES=

(RunTirneVaLue ("PM_7"))
)

)

(@SLOT= CH1RCVR.DIAGNOST1C_NOOULE
(@INITVAL= FALSE)

(@SOURCES=
(RunTimeVaLue (FALSE))

)
(@CACTIONS=

(LoadKB ("CH1RCVR.tkb") (@LEVEL=ENABLE;))
)

)

159

(@SLOT= CH1RCVR.NAHE
(@INITVAL= "CH1RCVR")
(@S_JRCES=

(RunTfmeVatue ("CH1RCVR"))
)

)

(@SLOT= CHIRCVR.SENSOR IN
(@INITVAL= "PNO'_
(@SOURCES=

(RunT i meVaLue ("PN_O"))
)

)

(@SLOT= CH1RCVR.SENSOROUT
(@INITVAL= "PN_I")
(_SOURCES=

(RunTimeVaLue ("PN_I"))
)

)

(@SLOT= CH1UPX.DIAGNOSTIC_HOOULE
(@INITVAL= FALSE)
(_SOURCES=

(R_Ti_Va[ue (FALSE))
)
(@CACTIONS=

(LoadKB ("CHIUPX.tkb") (@LEVEL=ENABLE;))
)

)

(_SLOT= CH1UPX.NAHE
(@INITVAL= "CH1UPX")
(_SOURCES=

(RunT imeVaLue ("CH1UPX"))
)

)

(@SLOT= CH1UPX.SENSOR IN
(@INITVAL= "PN_3T')
(@SOURCES=

(RunTimeVaLue
)

)

("PM_3"))

(@SLOT= CHIUPX.SENSOR OUT
(@TNITVAL= "PM_5_l)
(_SOURCES=

(RunTimeVaLue ("PM_5"))
)

)

(@SLOT= CH2AMP.DIAGNOSTIC_MOOULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTimeVatue (FALSE))
)
(@CACTIONS=

(LoadKB ("CH2AHP.tkb") (@LEVEL=ENABLE;))
)

)

(@SLOT= CH2AMP.NANE
(_INITVAL= "CH2AMP")
(@SOURCES=

(RunT imeVat ue ("CH2AMP"))
)

)

(@SLOT=CH2AHP.SENSORIN
(@INITVAL="PM_6_)
(@SOURCES=

(RunTimeVa[ue ("PH_6"))
)

)

(@SLOT= CH2AMP.SENSOROUT
(@INITVAL= "PM_8"T')
(@SOURCES=

(RunTimeValue ("PN_8"))
)

)

(@SLOT= CHZRCVR.DIAGNOSTIC_MOOULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTimeVaLue (FALSE))
)
(@CACTIONS=

(LoadKB ("CH2RCVR.tkb") (@LEVEL=ENABLE;))
)

)

(@SLOT= CH2RCVR.NAME
(@INITVAL= "CH2RCVR")
(@SOURCES=

(RunTimeVaLue ("CH2RCVR"))
)

)

(@SLOT= CH2RCVR.SENSORIN
(@INITVAL= "PM_O'_
(@SOURCES=

(RunTimeVatue ("PM_O"))
)

)

(@SLOT= CH2RCVR.SENSOR OUT
(@INITVAL= "PN_2'_
(@SOURCES=

(RunTimeVatue ("PH_2"))
)

)

(@SLOT= CH2UPX.DIAGNOSTIC_MODULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTimeVaLue (FALSE))
)
(@CACTIONS=

(LoadKB ("CHZUPX.tkb") (@LEVEL=ENABLE;))
)

)

(@SLOT= CHZUPX.NAME
(@INITVAL= "CH2UPX")
(@SOURCES=

(RunTirneVatue ("CH2UPX"))
)

)

(@SLOT= CH2UPX.SENSOR IN

(@INITVAL= ,,pM_4"T,)
(@SOURCES=

(RunTirneVatue
)

)

("PM_4"))

161

(@SLOT= CHZUPX.SENSOROUT
(@INITVAL= "PN_6_')
(_SOURCES=

(RunT imeVatue ("PN_6"))
)

)

(@SLOT= NSWITCH.CONFIG
(@SOURCES=

(Execute ("RequestNatrixSwitchConfig"))
)

)

(@SLOT= NSWITCH_CH11.DIAGNOSTIC_MODULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTimeVatue (FALSE))
)
(_CACTIONS=

(LoadKB ("NSWITCH.tkb") (@LEVEL=ENABLE;))
)

)

(@SLOT= MSWITCH_CH11.NAME
(@INITVAL= "MSWITCH")
(@SOURCES=

(RunTimeVaLue ("MSWITCH"))
)

)

(@SLOT= MSWITCH_CHll.SENSOR_IN
(@INITVAL= "PM_I")
(@SOURCES=

(RunTimeVa [ue ("PM_I"))
)

)

(@SLOT= NSWITCH_CH11.SENSOR_OUT
(@INITVAL= "PM_3")
(@SOURCES=

(RunTimeVatue ("PN_]"))
)

)

(@SLOT= MSgITCH_CH1Z.DIAGNOSTIC_HOOULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTimeVa[ue (FALSE))
)
(_CACTIONS=

(LoadKB ("NSWITCH.tkb") (@LEVEL=ENABLE;))
)

(@SLOT= MSWITCH CHI2.NAME
(@INITVAL= -"MSWITCH")
(@SOURCES=

(RunTimeVatue ("MSWITCH"))
)

)

(@SLOT= MSWITCH_CH12.SENSOR_IN
(@INITVAL= "PM_I")
(@SOURCES=

(RunTimeVaLue ("PM_I"))
)

)

(@SLOT= MSWITCH_CH12.SENSOROUT
(@INITVAL= "PM_4")
(@SOURCES=

(RunTimeVaLue ("PN4"))
))

162

163

(@SLOT= MSWITCH CH21.DIAGNOSTIC_MOOULE
(@INITVAL= -FALSE)
(@SOURCES=

(RunTimeVatue (FALSE))
)
(@CACTIONS=

(LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE;))
)

(@SLOT= MSWITCH CH21.NAME
(@INITVAL= -"MSWITCH")
(@SOURCES=

(RunTimeVatue ("MS_ITCH"))
)

)

(@SLOT= MSWITCH_CH21.SENSOR_IN
(@INITVAL= "PN_2")
(@SOURCES=

(RunTimeVatue ("PM_2"))
)

)

(@SLOT= MSWITCH_CH21.SENSOR_OUT
(@INITVAL= "PN_3")
(@SOURCES=

(RunT imeVat ue ("PM_3"))
)

)

(@SLOT= MSWITCH_CH22.DIAGNOSTIC_MODULE
(@INITVAL= FALSE)
(@SOURCES=

(RunTiemVatue (FALSE))
)
(@CACTIONS=

(LoadKB ("MSWITCH.tkb") (@LEVEL=ENABLE;l)
)

)

(@SLOT= MSWITCH_CH22.NAME
(@INITVAL= "MSWITCH")
(@SOURCES=

(RunTimeVatue ("MSWITCH"))
)

)

(@SLOT= MSWITCH_CH22.SENSOR_IN
(@INITVAL= "PM_2")
(@SOURCES=

(RunTi meVaLue ("PM_2"))
)

)

(@SLOT= MSWITCH_CH22.SENSOR_OUT
(@INITVAL= "PM._4")
(@SOURCES=

(RunTimeVa rue ("PM_4"))
)

)

(@SLOT= PM O.LEVEL
(@INITVAL= "OK")
(@SOURCES=

(RunTimeVatue
)

)

("OK"))

(_SLOT= PM O.NPJ4E
(_ZN[TVAL= "PN_O")
(_SOURCES=

(RunTimeVatue
)

)

{"PH..O"))

(_SLOT= PH O.READ[NG
(@[N]TVAL= "GO00")
(_SOURCES=

(RunTimeVaLue
)

)

("GOOD"))

(_SLOT= PH 1.NAHE
(@ZN[TVAL= "PN_I")
(_SOURCES=

(RunTimeVatue
)

)

("PH_I "))

(@SLOT= PM 2.NAME
(_ZNITVAL= "PM_2")
(_SOURCES=

(RunTimeVatue
)

)

("PH 2"))

(_SLOT= PH 3.NAHE
(@INITVAL= "PN_3")
(_SOURCES=

(RunTimeVaLue ("PH_3"))
)

)

(gSLOT= PN 4.NAHE
(_]N[TVAL= "PH_4")
(@SOURCES=

(RunTimeVatue
)

)

("PH_4"))

{_SLOT= PN 5.NANE
(_]N[TVAL= "PM_5")
(@SOURCES=

(RunTimeVatue
)

)

("PN_5"))

(_SLOT= PH 6.NAHE
(@[N[TVAL= "PN_6")
(@SOURCES=

(RunTimeVa[ue
)

)

("PN_6"))

(gSLOT= PH 7.XAHE
(a[N[TVAL= "PN_7")
{_SOURCES=

(RunTimeVaLue
)

)

("PH_7"))

(_SLOT= PH 8.NAHE
(@[N[TVAL= "PN_8")
(@SOURCES=

(RunTimeVaLue
)

)

("PM_8"))

(_RULE= RULE 029 QUALIFICATION_OF_CONFIDENCEmREJECTED

(_LHS=

(<= (\CURRENT_FAULT.NANE\.CF) (-0.9))
)

(_HYPO= Evaluate_Certainty_Factors)
(_ZHS=

(Let (\CURRENT_FAULT.NAHE\.CONF]DENCE)
(Let (\CURRENT_FAULT.NAHE\.VER]FIED)

)

("REJECTED"))

(FALSE))

(_RULE= RULE 028 QUALIFICATION..OF_CONFIDENCEVERY_[NPROBABLE

(_LHS=

(<= (\CURRERTFAULT.NAHE\.CF) (-0.75))
(> (\CURRENT FAULT.NAHE\.CF) (-0.9))

)

(@HYPO= EvaluateCertainty_Factors)
(_RHS=

(Let (\CURRENT_FAULT.NAHE\.CONF[DENCE)
)

("VERY_IMPROBABLE"))

(_RULE= RULE 027 OUAL]F]CAT]OR OF_CONFIDENCE]NPROBABLE

(_LHS=
(<= (\CURRENT FAULT.NAHE\.CF) (-0.5))

(> (\CURRENT_FAULT.NAME\.CF) (-0.75))
)

(@HYPO= Evaluate_Certainty_Factors)
(gRHS=

(Let (\CURRENT FAULT.NAHE\.CONF[DENCE)
)

(" [HPROBABLE"))

(gRULE= RULE 026 QUAL[F[CAT[ON_OF_CONF]DENCE_UNL]KELY
(@LHS=

(<= (\CURRENT FAULT,NANE\.CF) ('0.25))

(> (\CURRENT_FAULT.NAHE\.CF) (-0.5))
)

(@HYPO= Evatuate_Certainty_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NANE\.CONFIDENCE)
)

("UNLIKELY"))

(_RULE= RULE 025 QUALIFICATION. OF_CONFIDENCE UNKNOWN
(_LHS=

(> (\CURRENT FAULT.NAHE\.CF) (-0.25))

(< (\CURRENT FAULT.NAHE\.CF) (0.25))
)

(@HYPO= Evaluate_Certainty_Factors)
(_RHS=

(Let (\CURRENT_FAULT.NAME\.CONF]DENCE) ("UNKNOIgN"))
)

)

(_RULE= RULE 024 QUAL]F]CAT]ON_OF_CONFIDENCE POSSIBLE
(@LHS=

(>= (\CURRENT_FAULT.NAHE\.CF) (0.25))

(< (\CURRENT_FAULT.NAHE\.CF) (0.5))
)

(_HYPO= Evaluate_Certainty_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NAHE\.CONFIDENCE)

)
)

("POSS I BLE'))

165

(@RULE= RULE 023 QUALIFICATION_OF_CONFIDENCE LIKELY
(@LHS=

(>= (\CURRENT_FAULT.NAME\.CF) (0.5))
(< (\CURRENT_FAULT.NAHE\.CF) (0.75))

)

(@NYPO= EvatuateCertaJnty_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NANE\.CONFIDENCE)
)

)

("LIKELY"))

(_RULE= RULE 022 QUALIFICATION_OF_CONFIDENCEPROBABLE
(@LHS=

(>= (\CURRENT_FAULT.NAME\.CF) (0.75))

(< (\CURRENT_FAULT.NANE\.CF) (0.9))
)

(@HYPO= EvaluateCertainty_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NAMEk.CONFIDENCE)
)

)

("PROBABLE"))

(@RULE= RULE 021

(@LHS=

(>= (\CURRENT_FAULT.NANEk.CF) (0.9))
)

(@HYPO= EvatuateCertainty_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NPJ4E\.CONFIDENCE)
(Let (\CURRENT_FAULT.NAMEk.VERIFIED)

)
)

- QUALIFICATION_OF_CONFIDENCE ESTABLISHED

("ESTABLISHED"))
(TRUE))

(@RULE= RULE 012 MOOEL_MATRIX_SWITCH

(@LHS=

(Is (MSgITCH.CONFIG) ("B"))

)

(@HYPO= ModeL_Matrix_Switch_SubSystem)

(@RHS=

(CreateObject (MSWITCH_CH12) (ISUBSYSTEMS_))
(CreateObject (MSWITCH_CH21) (ISUBSYSTEMS_))

)
)

(@RULE= RULE 011 MODEL_MATRIX_SWITCH

(@LHS=

(is (MSWITCH.CONFIG) ("A"))

)

(@HYPO= Me<let_Matrix_Switch_SubSystem)

(@RHS=

(CreateObject (MSgITCH_CH11) (SUBSYSTEMS))
(CreateObject (MSWITCH_CH22) (SUBSYSTEMS))

)

)

(@RULE= RULE 902_ RETURN_LIST OF BAD SENSORS_TOTooLBook

(@LHS=

(Yes (TBK_Request.Bad_Sensors))
)
(@HYPO= Return BAD Sensors)

(@RHS=

(Let ((IBAD_SENSORSI}.RTN_READING) (TRUE))
(Strategy (@CACTIONSON=FALSE;))

I !
(Reset ((!BAD_SENSORS!}.RTN_READING))
(Strategy (@CACTIONSON=TRUE;))

II II(Execute (BadSensorReadingsReturned))

166

)
)

(@RULE= RULE 901 RETRIEVE_SENSOR_PARAMETERS_FRON_SENSOR_DATABASEAND RETURN\
NONIMAL.OATA_TO_Too[Book

(@LHS=
(Yes (TBKRequest.Nominai_Sensor Data)7
(Retrieve ("SENSOR.nxp") (@TYPE_NXPDB;@FWRD=FALSE;_UNKNOWN=TRUE;@PROPS=NANE,\

NOMINAL,TOLERANCE,ZERO_LEVEL;@FIELDS="NAHE",\
,,NOHINAL.,.TOLERANCE","ZERO_LEVEL";_ATOHS=<]SENSORSI>;\
77

)
(@HYPO= Return_NominaLSensorData)
(@RHS=

(Do (<ISENSORS_>.NOHINAL) (<ISENSORS[>.NOHINAL))
)

)

(@RULE= RULE 003
(@LHS=

(> (\CURRENT_SENSOR.NAHE\.ERROR)
)
(@HYPO= Sensor_Lever_Description.HIGH)
(@RHS=

(Let (\CURRENT_SENSOR.NAME\.LEVEL)
)

7

QUALIFICATION_OF_HIGH_SENSOR_LEVELS

(0))

("HIGH"))

(@RULE= RULE 004
(@LHS=

(< (\CURRENT_SENSOR.NAHE\.ERROR)
)
(@HYPO= Sensor_LeveL_Description.LOW)
(@RHS=

(Let (\CURRENT_SENSOR.NAME\.LEVEL)
)

)

QUALIFICATION OF LOWSENSOR_LEVELS

(0))

("LOl_"))

(@RULE= RULE 005 QUALIFICATION OF OK SENSOR_LEVELS
(@LHS=

(<= (ABS(\CURRENT_SENSOR.NAME\.ERROR)'\CURRENT_SENSOR.NAHE\.TOLERANCE)
)
(@HYPO= Sensor_Level_Description.OK)
(@RHS=

(Let (\CURRENT_SENSOR.NAHE\.LEVEL) ("OK"))
)

)

(077

(@RULE= RULE 006 QUALIFICATION_OF_ZERO_SENSOR_LEVELS
(@LHS=

(<= (\CURRENT_SENSOR.NAME\.DATA-\CURRENT_SENSOR.NAHE\.ZEROLEVEL) (0))
)
(@HYPO= Sensor LeveL_Description.ZERO)
(@RHS=

(Let (\CURRENT_SENSOR.NAHE\.LEVEL) ("ZERO"))
)

)

(@RULE= RULE 001 QUALIFICATION OF BAD SENSOR_READINGS
(@LHS=

(> (ABS(\CURRENT_SENSOR.NAME\.ERROR)-\CURRENT_SENSOR.NAHE\.TOLERANCE)
)
(@HYPO= Sensor Reading_Description.BAD)
(@RHS=

(Let (\CURRENT_SENSOR.NAME\.READING) ("BAD"))
(CreateObject (\CURRENTSENSOR.NAME\) (IBAD_SENSORSI))
(Let (\CURRENT_SENSOR.NAME\.EVALUATED) (TRUE))

)
)

(0)7

167

168

(@RULE= RULE 002 QUALIFICATION_OF_GOOO_SENSOR_READINGS
(@LHS=

(<= (ABS(\CURRENT_SENSOR.NANE\.ERROR)-\CURRENT_SENSOR.NAHE\,TOLERANCE)
)

(@HYPO= Sensor_Reading_Description.G000)
(@RHS=

(Let (\CURRENT_SENSOR.NAHE\.READING) ("GO00"))
(Let (\CURRENT_SENSOR.NAME\.EVALUATED) (TRUE))

)

)

(0))

(@GLOBALS=

@INHVALUP=FALSE;

@INHVALDO_/N=TRUE;
@INHOBJUP=FALSE;

@INHOBJDOWN=FALSE;
@INHCLASSUP=FALSE;

@INHCLASSDO_N=TRUE;
@INHBREADTH=TRUE;

@INHPARENT=FALSE;
@P_TRUE=TRUE;

@P_FALSE=TRUE;

@PWNOTKNOWN=TRUE;
@EXHBWRD=TRUE;

@PTGATES=TRUE;
@PFACTIONS=TRUE;

@SOURCESON=TRUE;
@CACTIONSON=TRUE;

@VOLLIST=PM_I.DATA;
)

APPENDIX B

FAULT DETECTION KNOWLEDGE BASE

(@VERSION= 020)

(_OBJECT= A Fault Has Been_Detected
(_PROPERT_ES=

Value @TYPE=Boolean;
)

)

(_OBJECT= A Fault Has Not Been_Detected
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

(_OBJECT= Transponder_FunctioningProperly
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

(@RULE= R1
(@LHS=

(Yes (TBK_Request.Detection))
(Is (<_SENSORS_>.READING) ("BAD"))

)
(@HYPO= A_Fault Has Been Detected)
(@RHS=

(Execute ("FauttDetected"))
)

)

(@RULE= R2
(@LHS=

(Yes (TBK_Request.Detection))
(is ((ISENSORSI}.READ]NG) ("GOOD"))

)
(@HYPO= A Fautt Has Not Been_Detected)
(@RHS=

(Execute ("NoFaul tDetected"))
)

)

169

APPENDIX C

FAULT ISOLATION KNOWLEDGE BASE

(@VERSION= 020)

(_OBJECT= IsoLate_FauLt_Symptoms
(_PROPERT1ES=

VaLue @TYPE=Bootean;
)

)

(@RULE= RULEO41SOLATION_OF_FAULT_TO_FREQUENCY_CONPONENTS
(@LHS=

(Yes (TBK_.Request. Isotation))

(NotMember ((IBAD_SENSORSI)) (<IPUR_SENSORS_>))

(Is (<[BER_SENSORS[>.READING) ("BAD"))
)

(@HYPO= IsoLate_FauLt_Symptoms)
)

(@RULE= RULEOIISOLATION_OF_FAULT_TO_SUBSYSTEMS

(_LHS=

(Yes (TBK_Request.lsotation))

(Yes (Mode[_Matrix_Switch_SubSystems))
(Is (<_SUB_SYSTEMSI>.READING_IN) ("GO00"))

<1 I(Is (ISUB_SYSTEHSI>.READING_OUT) ("BAD"))
)

(@HYPO=]sotateFautt_Symptoms)
(@RHS=

(Let (<_SUB SYSTEMSI>.ISOLATED)
(CreateObject (<ISUB_SYSTEMSI>)

)

)

(TRUE))

([ISOLATED SUB SYSTEMSI))

170

APPENDIX D

RECEIVER SUBSYSTEMS

DIAGNOSTIC KNOWLEDGE BASES

D.1 CHANNEL 1 RECEIVER SUBSYSTEM

(@VERSION= 020)

(@PROPERTY= CF @TYPE=Float;)

(@PROPERTY= COMPONENT @TYPE=String;)

(@PROPERTY= COMPONENT_IN @TYPE=String;)
(@PROPERTY= CO#4PONENT OUT @TYPE=String;)
(@PROPERTY= CONFIDENCE @TYPE=String;)

(@PROPERTY= COUPLING @TYPE=BooLean;)
(@PROPERTY= GAIN @TYPE=Ftoat;)

(@PROPERTY= INF CAT @TYPE=FLoat;)
(@PROPERTY= MB -@TYPE=Float;)

(@PROPERTY= MB ACCUN @TYPE=Float;)
(@PROPERTY= ND- @TYPE=Float;)

(@PROPERTY= NO ACCUM @TYPE=FLoat;)

(@PROPERTY= NO(_EL_GAIN @TYPE=Ftoat;)

(@PROPERTY= MODEL POWER_IN @TYPE=Ftoat;)
(@PROPERTY= NODELPOi4ER OUT @TYPE=F[oat;)
(@PROPERTY= NAME @TYPE=String;)

(@PROPERTY= NOMINAL_GAIN @TYPE=Float;)

(@PROPERTY= NOMINAL POWER OUT @TYPE=Float;)
(_oROPERTY= NOMINALZSETT[NG @TYPE=Float;)

(@PROPERTY= NOMINAL POWER IN @TYPE=FLoat;)
(@PROPERTY= POWER IN @-TYPE=Float;)

(_°ROPERTY= POWER LEVEL_IN @TYPE=String;)

(@PROPERTY= POWERLEVEL_OUT @TYPE=String;)
(@PROPERTY= POWER OUT @TYPE=FLoat;)
(@PROPERTY= SETTING @TYPE=FLoat;)

(@PROPERTY= VERIFIED @TYPE=Boolean;)

(@CLASS= AMP FAULTS

(@PROPERTIES=

CF

COMPONENT

CONFIDENCE

INF_CAT
NB

MB ACCUM
MD-

MD ACCUM
NAME

POIgER LEVEL_OUT
VERIFTED

)
)

(@CLASS= AMPLIFIERS
(@PROPERTIES=

COMPONENT_IN

COMPONENT_OUT
GAIN

MODEL_GAIN

MODEL_POWER_I N

HOD E L_POWE R_OUT
NAME

NOMINAL_GAIN

NOMINAL_POWER_OUT

NONINAL_POWER_IN
POWER IN

POWER_-LEVELIN

POWER_LEVEL_OUT
POi,IER_OUT

)

(@CLASS= ATTEN_FAULTS
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
MB

MB_ACCUM
MD
HD ACCUN
NAME

POWER_LEVEL_OUT
VERIFIED

)

)

(@CLASS= ATTENUATORS
(@PROPERTIES=

COMPONENT_IN
COMPONENT_OUT
GAIN

NOOEL GAIN

MODELZPOWERIN

MODEL_POb/ER_OUT
NAME

NOMINAL_GAIN

NOMINAL_POWER_OUT
NOMINAL_SETTING

NONINAL POWER_IN

POWER_IN

171

POWER_LEVEL_IN
POIVER_LEVEL_OUT
POWER OUT
SETTING

)

(@CLASS= COHP COUPL [NG_FAULT_STATES
(@PROPERT I ES-

CF
COMPONENT

CONFIDENCE

I NF_CAT
MB

HB ACCUH
MD-

HD ACCUH
NAIVE

POWERLEVEL_OUT
VERIFIED

)
)

(@CLASS= COMPONENTS
(@SUBCLASSES=

ATTENUATORS
AMPLIFIERS

RECEIVERS

LOCAL OSCILATORS
)
(_°ROPERTIES=

COMPONENT IN

COHPONENTOUT
GAIN

MOOEL_GAIN
HODELPOWER_IN

MODEL_POWER_OUT
NAME

NOMINAL_GAIN
NOMINAL_POWER_OUT

NONINAL POWER_IN
POWER_IN

POWER OUT
)

)

(@CLASS= FAULT STATES
(@SUBCLASSES=

ATTEN FAULTS
AMP FAULTS
RECEIVER FAULTS

LO FAULTS

CO;_P_COUPLING_FAULT_STATES
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
HB

MB ACCUN

MD
MD ACCUM
NA_E
POWER_LEVEL_OUT
VERIFIED

)
)

(@CLASS= LEVEL_I_FAULT_STATES
(@PROPERTIES=

VERIFIED

)

(@CLASS= LO FAULTS
(@PROPERT ! E-S=

CF
COMPONENT

CONFIDENCE

I NF_CAT
MB

Me ACCUM
MD

MD ACCUM

NA_E

POWER_LEVELOUT
VERIFIED

)
)

(@CLASS= LOCAL_OSCILATORS
(@PROPERTIES=

COMPONENT IN

COMPONENT OUT
GAIN

RODEL_GA I N

NODEL_POWER_I N
NODEL_POWER_OUT
NANE

NOMINAL_GAIN

NONI NAL_POWER_OUT
NOMINAL_POWER_IN
POWER IN

POWERZLEVELIN

POWER_LEVEL OUT
POWER OUT

)
)

(@CLASS= RECEIVER FAULTS

(@PROPERTIES=
CF
COMPONENT

CONFIDENCE

INF_CAT
NB

MS_ACCUM
NO

MD ACCUM

NAME

POWER_LEVEL_OUT
VERIFIED

)
)

(@CLASS= RECEIVERS

(@PROPERTIES=

COMPONENT_I N

COMPONENT_OUT
GAIN

MODEL GAIN

MODEL-POWER_I N

MODEL_POWER_OUT
NAME

NOMINAL_GAIN
NONI NAL_POWE R_OUT

NON] NAL POWER_] N
POWER_IN

POWER_LEVEL_I N
POWER_LEVEL OUT
POWER OUT

)
)

(@CLASS= UNCERTAINTY_OVERHEAD

172

(@SUBCLASSES=

FAULT_STATES
)
(@PROPERTIES=

CF
CONFIDENCE

NB

MB_ACCUM
MD

MD..ACCUM

)

)

(_OBJECT= ANP COUPLING

(_CLASSES=
AHP FAULTS

COMP_COUPL I NG_FAULT_STATES

)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

I NF_CA T
MB

MB_ACCUM
ND

MD ACCUM
NAME

POWER_LEVEL_OUT
VERIFIED

)

)

(_OBJECT= AHP_GENERAL_FAI LURE
(@CLASSES=

AHP_FAULTS
)
(_oROPERT l ES=

CF

COMPONENT
CONFIDENCE

I NF_CAT
NB

MB ACCUM
ND

ND ACCUN
NAIVE

POWER_LEVEL_OUT
VERIFIED

)

)

(_OBJECT= ATTEN_COUPLING
(@CLASSES=

ATTEN FAULTS

C_P_COUPLING_FAULT_STATES
)

(_PROPERTIES=
CF
COHPONENT

CONFIDENCE

INF_CAT
MB

MB..ACCUM
liD

MO ACCUM

NA_E

POWER_LEVEL_OUT
VERIFIED

)

)

173

(_OBJECT= ATTEN_GENERAL_FA I LURE
(@CLASSES=

ATTEN_FAULTS
)

(@PROPERT ZES=
CF

COMPONENT
CONFIDENCE

INF_CAT
MB

MB_ACCUM
MD

MD ACCUM

NA_E

POWER_LEVEL_OUT
VERIFIED

)
)

(@OBJECT= ATTEN_SETTING
(@CLASSES=

ATTEN_FAULTS
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

]NF_CAT
MB

MB_ACCUM

MD ACCUM
NAIVE

POtJER LEVEL OUT
VERIFTED

)

)

(_OBJECT= CURRENT_COMPONENT
(@PROPERTIES=

COUP L IN G

NAME

)

)

(@OBJECT = CURRENT_FAULT
(@PROPERTIES=

NAME

)

)

(_OBJECT= CURRENT SUBSYSTEM
(@PROPERTIES=

POWERLEVEL_OUT
)

)

(@OBJECT= DeveLop_Diagnostic_Strategy
(_PROPERTIES=

Vatue @TYPE=Bootean;

)
)

(@OBJECT= Evaluate_Attenuator_Setting
(@PROPERTIES=

VaLue @TYPE=Bootean;
)

)

(@OBJECT= Evaluate_FauLt_State_Confidence_Factors
(_PRORERTIES=

VaLue @TYPE=BooLean;

)

174

(@OBJECT= FN
(@CLASSES=

FAULT_STATES
)
(_oROPERT I ES=

CF

COMPONENT
CONFIDENCE

INF_CAT
HB

MB_ACCUM

NO

MD ACCUM

NA_E
POt,IER_LEVE L_OUT
VERIFIED

)

(@OBJECT= FO
(@CLASSES=

FAULT_STATES
)
(@PROPERTIES=

CF
COMPONENT

CONFIDENCE

INF_CAT
MB

MB_ACCUM
MD
ND ACCUM
NAME

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= FP
(@CLASSES=

FAULT STATES
)
(@PROPERTIES=

CF
COMPONENT

CONFIDENCE

INF_CAT
MB
NB ACCUM

m

HD

MD ACCUM

NA_E
POWER_LEVEL_OUT
VERIFIED

)

(@OBJECT= FQ
(@CLASSES=

FAULT_STATES
)
(@PROPERT [ES=

CF
COMPONENT
CONF I DENCE

INF_CAT
MB

NB_ACCUM
MD
MD ACCUM
NAME

POWER_LEVEL_OUT
VERIFIED

)

(@OBJECT= FR
(@CLASSES=

FAULT_STATES

)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
MB

MB_ACCUM

MD

HD ACCUM

NA_E
POWER_LEVEL_OUT

VERIFIED

)

(@OBJECT= FS
(@CLASSES=

FAULT_STATES
)

(@PROPERT I ES=
CF

COMPONENT
CONFIDENCE

I NF_CAT
MB

MB_ACCUN
lID

MD ACCUM

NAJ_E

POWER_LEVEL_OUT

VERIFIED

)

(@OBJECT= FT
(@CLASSES=

FAULT_STATES

)
(@PROPERTIES=

CF
COMPONENT

CONFIDENCE

INF_CAT
MB

MB_ACCUM
MD

MD ACCUM

NAME

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= FU
(@CLASSES=

FAULT_STATES
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
MB

MB_ACCUN

175

MO ACCUN

N_E

POtJER_L EVEL_OUT
VERIFIED

)

)

(@OBJECT= FV

(@CLASSES=

FAULT STATES
)

(@PROPERTIES=
CF

COMPONENT
CONFIDENCE

I NF_CAT
MB

MB_ACCUM
HD

MD ACCUM

N_E

POWER LEVEL_OUT
VER I FTED

)
)

(@OBJECT= FW

(@CLASSES=

FAULTSTATES
)
(@PROPERT I ES=

CF

COMPONENT
CONFIDENCE

INF CAT
MB

HB_ACCUN
MD

ND ACCUH
NAME

PO_ER LEVEL OUT
VER I FI'ED

)

)

(@OBJECT= FX

(@CLASSES=

FAULT STATES
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
HB

MB_ACCUM
MD

MD ACCUM

NARE

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= FY

(@CLASSES=

FAULTSTATES
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

INF_CAT
MB

MB_ACCUM
ND

HD ACCUM
NAI4E

PONER_LEVEL OUT
VERIFIED

)
)

(@OBJECT= FZ

(@CLASSES=

FAULT STATES
)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

[NF_CAT
MB

MB ACCUM

MD
MD ACCUN

N_E

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= Initiatize_Database
(@PROPERTIES=

Va[ue @TYPE=Boolean;
)

)

(@OBJECT= Levet_l_DiagnostJcs
(@PROPERTIES=

Value @TYPE=BooLean;
)

)

(@OBJECT= LO_COUPL]NG
(@CLASSES=

COHP_COUPL I NG_FAULT_STATES
LO_FAULTS

)
(@PROPERTIES=

CF

COMPONENT
CONFIDENCE

I NF_CAT
MB

MB ACCUM
MD
MD ACCUM
NAME

POWER_LEVEL_OUT
VERIFIED

)
)

(@OBJECT= LO_GENERAL_FAILURE
(@CLASSES=

LO_FAULTS
)
(@PROPERTIES=

CF
COMPONENT

CONFIDENCE

]NF_CAT
MB

MBJCCUM

ND
141) ACCUN

N_E

POWER_LEVEL OUT
VERIFIED

)

(@OBJECT= OPEN GATE
(@PROPERTIES_

Vatue @TYPE=Boolean;
)

)

(@OBJECT= RCVR COUPLING
(@CLASSES=

COMP_COUPL I NG_FAULT_STATE S

RECE I VER_FAULTS
)

(aPROPERT I ES=
CF
COMPONENT

CONF I DENCE

I NFCAT
MB

MB_ACCUN
ND
MD ACCUN

NAME

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= RCVR_GENERAL_FA1LURE
(@CLASSES=

RECEIVER_FAULTS
)

(@PROPERTIES=
CF
COMPONENT

CONFIDENCE

INF_CAT
NB

MB..ACCUM
MD

MD ACCUM
NA_E

POWER_LEVEL_OUT
VERIFIED

)

)

(@OBJECT= Test_Component_CoupLing
(@PROPERTIES=

Vatue @TYPE=Bootean;

)
)

(@SLOT= AMP FAULTS.COMPONENT

(@INITVAL= "AMP_l")
(@SOURCES=

(RunT imeVat ue ("AMP_I"))

)

)

(@SLOT= ATTEN FAULTS.COMPONENT
(@INITVAL _ "SAIZ")

(@SOURCES=
(RunT imeVatue ("SA12"))

)

)

176

(@SLOT= ATTEN FAULTS.VERIFIED
(@SOURCES_

(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Do (SELF.COMPONENT)

(CURRENT_COMPONENT.NAME))
(Reset (EvatuateAttenuator_Setting))

(Do (Evatuate Attenuator_Setting)
(Evatuate_Attenuator_Setting))

)

)

(@SLOT= COMP_COUPLING_FAULT_STATES.VERIFIED
(@SOURCES=

(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Do (SELF.COMPONENT)

(CURRENT_COMPONENT.NAME))
(Reset (Test_Component_Coupting))

(Do (Test_Component_Coupting)

(Test_Component_CoupLing))
)

)

(@SLOT= COMPONENTS.GAIN

(@SOURCES=

(Do (SELF.POWER_OUT-SELF.POWER_IN)
(SELF.GAIN))

)
(@CACTIONS=

(Do (SELF.POWER_IN+SELF.GAIN)
(SELF.POWER_OUT))

)
)

(@SLOT= CQf4PONENTS.MOOEL_GAIN
(@SOURCES=

(DO (SELF.NOMINAL_GAIN) (SELF.MODEL_GAIN))
)

(@CACTIONS=

(Do (SELF.MOOEL_POMER_IN+SELF.NODEL_GAIN)
(SELF.mODEL_POWER_OUT))

)
)

(@SLOT= COMPONENTS.MODEL_POWER IN
(@SOURCES=

(Do (\SELF.COMPONENT_IN\.MOOELPOIJER_OUT)
(SELF.MODEL_POWER_IN))

)
(@CACTIONS=

(Do (SELF.MODEL_POWER_IN+SELF.NODEL_GAIN)
(SELF.MODEL_POWER_OUT))

)
)

(@SLOT= COMPONENTS,MOOEL_POWEROUT
(@SOURCES=

(Do (SELF.NODEL_POWER_IN+SELF.NOOEL_GAIN)
(SELF.MODEL_POWER_OUT))

)
(@CACTIONS=

(Do (SELF.MODEL POWER OUT)

(\SELF.COMPONENT_OUT\.mO_)EL_PE_JER_IN))
)

)

(@SLOT= COMPONENTS.POWER_IN
(@SOURCES=

(Do (\SELF.COHPONENT_IN\.POWEROUT)

(SELF.POWER_IN))
)

(@CACTIONS=

(Do (SELF.POWER_IN+SELF.GAIN)

(SELF.POWER_OUT))

1

)

(@SLOT= CONPO_IENTS. POWER_OUT
(@SOURCES=

(Do (SELF. POWER_I N+SEL F.GAI N)

(SEL F. POWER_OUT))
)

(@CACT I ONS=

(Do (SELF.POWER_OUT)

(\SEL F. COMPONENT_OUT\. POWER_I M))
)

)

(@SLOT= FAULT STATES.CF
(@CACTIONS=

(Do (SELF.NAME) (CURRENT_FAULT.NAME))
(Reset

(EvaLuate Fault_State_Confidence_Factors))
(Do

(EvaLuate_FauLtState_Confidence_Factors)
(EvaLuate Fau(tState_Conf_dence_Factors))

)

)

(@SLOT= LO FAULTS.COMPONENT
(@INITVAL= "RCVRLO")

(@SOURCES=
(RunT imeVatue ("RCVRLO"))

)

)

(@SLOT= RECEIVER FAULTS.COMPONENT

(@INITVAL= %RCVR_I")

(@SOURCES=

(RunTimeVaL ue ("RCVR_I"))
)

)

(@SLOT= SENSORS.LEVEL

(@SOURCES=

(Do (SELF.NAME) (CURRENT_SENSOR.NANE))

(Reset (Sensor_Level..Description.HIGH))
(Do (Sensor..Leve[_.Description.NIGN)

(Sensor_Level_Description.HIGH))
(Reset (Sensor_Leve|_Description.ZERO))
(Do (Sensor Level Description,ZERO)

(Sensor_Levet_Descr_ption_ZERO))

(Reset (Sensor_Level_Description.LOW))
(Do (Sensor_Level_Description.Low)

(Sensor_Level_Description.LOW))
)

)

(@SLOT= UNCERTAINTY OVERHEAD.NB
@COMHENTS="This-the Measure of BeLief (MB) slot

for at[objects utilizing the uncertainty

overhead";
(@INITVAL= 0.0)

(@SOURCES=
(RunTimeVatue (0.0))

)
(@CACTIONS=

(Do

(SELF.NB_ACCUM+(I"SELF.NB_ACCUN)*SELF.NB)

(SELF.MB_ACCUM))
(Reset (SELF.MB))

)
)

(@SLOT= UNCERTAINTY_OVERHEAD.NB_ACCUM
(@INITVAL= 0.0)
(@SOURCES=

177

(RunTimeVatue (0.0))

)
(@CACTIONS=

(Do (SELF.NB_AC_-SELF.NI)_ACCLI4)
(SELF.CF))

1
)

(@SLOT= UNCERTAINTY_OVERHEAD.ND
(@INITVAL= 0.0)

(@SOURCES=
(RunTimeVaLue (0.0))

)
(@CACTIONS=

(Do

(SELF.MD_ACCUM+(I-SELF.MDACCUM)*SELF.ND)
(SELF.MD ACCUM))

_Reset (SELF.MD))

)
)

(@SLOT= UNCERTAINTY_OVERHEAD.NO_ACCUM
(@INITVAL= 0.0)

(@SOURCES=
(RunTimeVatue (0.011

)
(@CACTIONS=

(Do (SELF.MBACCUN-SELF.MD_ACCUM)
(SELF.CF))

)
)

(@SLOT= AMP COUPLING.NAME

(@INITVAL= "AHPCOUPLING")
(@SOURCES=

(RunTimeVa rue (,,ANP_COUPL I NG"))
)

)

(@SLOT= AMP_COUPLING.POWER_LEVEL_OUT
(@INITVAL= "ZERO")
(@SOURCES=

(RunT i meVa tue ("ZERO"))

)

)

(@SLOT= AMP COUPLING.VERIFIED

@INFATOI_=AMP_COUPLING.INFCAT;
)

(@SLOT= AMP_GENERAL_FAILURE.NAME

(@INITVAL= "AMP_GENERAL_FAILURE")

(@SOURCES=

(RunTimeVaLue ("AMPGENERALFAILURE"))
)

)

(@SLOT= AMP_GENERAL_FAILURE.POWER_LEVEL_OUT
(@INITVAL= "HIGH, LOW, ZERO")
(@SOURCES=

(RunTimeVaLue ("HIGH, LOW, ZERO"))

)
)

(@SLOT= AMP GENERAL FAILURE.VERIFIED

@INFAT_=AMP_GENERAL_FAILURE.INF_CAT;
)

(@SLOT= ATTEN COUPLING.NAME

(@INITVAL _ "ATTEN_COUPLING")
(@SOURCES=

(RunTimeVatue ("ATTEN_COUPLING"))
)

(_SLOT=ATTENCOUPLING.POWER_LEVEL_OUT
(@INITVAL;"ZERO")

(_SOURCES=
(RunT i meVa I ue ("ZERO"))

)
)

(@SLOT= ATTEN COUPLING.VERIFIED

]NFAT=ATTEN COUPLINGoINF CAT;
)

(@SLOT= ATTEN GENERAL FAILURE.NAME

(@INITVAL _ "ATTEN_GENERAL_FAILURE")

(@SOURCES=

(RunT imeValue ("AT TEN_GENERAL_FA ILURE"))

)

)

(@SLOT= ATTENGENERAL_FAILURE.POWER_LEVEL_OUT
(@INITVAL= "HIGH, LOW, ZERO")

(@SOURCES=

(RunTfmeValue ("HIGH, LOW, ZERO"))
)

)

(@SLOT= ATTEN GENERAL FAILURE.VERIFIED

@INFATI_=ATTEN_GENERAL_FAILURE.INF_CAT;
)

(@SLOT= ATTEN SETTING.NAME

(_iNITVAL_ "ATTEN_SETTING")
(@SOURCES=

(RunT imeVa tue ("ATTEN_SETT ING"))
)

)

(@SLOT= ATTEN SETTING.POWER LEVEL OUT
(_INITVAL; "NIGH, LOW_ZERO'_

(@SOURCES=

(RunT_meVatue ("NIGN_ LOW, ZERO"))

)
)

(_SLOT= ATTEN SETTING.VERIFIED

@INFATOH=ATTEN_SETTING.INF CAT;
)

(@SLOT= CURRENT COMPONENT.COUPLING

@PROMPT="Check the coupt ing of

@V(CURRENT_COMPONENT.NAME). Is the input or output

connection Loose ?";

_COI_4ENTS="ThIs slot will inptemented by

ToolBook";@WHY="I t is possible that
@V(CURRENT COMPONENT) is not coupled to the

transponde_ correct ly.";
(@SOURCES=

(AskQuest i on

(CURRENT_COMPONE NT. COUPL ING) (NOTKNOWN))

)

)

(@SLOT= CURRENTSUBSYSTEM.POWER_LEVEL_OUT

(@INITVAL= "ZERO")

(@SOURCES=

(RunTimeValue ("ZERO"))
)

)

(@SLOT= FN.VERIFIED

@INFATOM=FN.INF_CAT;
)

178

(@SLOT= FO.VERIFIED

@INFATOM=FO.INF_CAT;

)

(_SLOT= FP.VERIFIED

@INFATOM=FP.INF_CAT;
)

(_SLOT= Fg.VERIFIED

_INFATOM=FQ.INF_CAT;
)

(@SLOT= FR.VERIFIED

@INFATOM=FR.INF_CAT;
)

(@SLOT= FS.VERIFIED

@INFATOM=FS.INF_CAT;
)

(@SLOT= FT.VERIFIED

@INFATOM=FT.INF_CAT;
)

(_SLOT= FU.VERIFIED

@INFATOM=FU,INF_CAT;
)

(@SLOT= FV.VERIFIED

@INFATOM=FV. INF CAT;
)

(@SLOT= FW.VERIFIED

@INFATOM=FW. INF_CAT;

)

(@SLOT= FX.VERIFIED

@INFATOM=FX.INF_CAT;
)

(@SLOT= FY.VERIFIED

gINFATOM=FY.INF_CAT;
)

(@SLOT= FZ.VERIFIED

@INFATOM=FZ.INF_CAT;
)

(@SLOT= LO COUPLING.VERIFIED

@INFATOM=LO_COUPLING.INF_CAT;
)

(@SLOT= LO GENERAL FAILURE.VERIFIED

@INFATOH=LO_GENERAL_FAILURE.INF_CAT;
)

(@SLOT= OPEN C.d_TE
@PROMPT=_Something is Wrong. The OPEN Cd_TE is

closed. PLease enter TRUE to continue ..._;
@COMMENTS="The (3PEN GATE is a boolean slot

which is always true. ";_WHY="The OPEN Cd_TE should

always be TRUE. It is used as a condition of rules

which must always fire to effect LHS actions.";
(@INITVAL= TRUE)

(@SOURCES=
(RunTimeVatue (TRUE))

)

)

(@SLOT= PM 1.NAME

(@INITVAL= "PM._I")
(@SOURCES=

(RunTimeValue ("PM_I "))

)
)

(@SLOT= PM 1.ZERO LEVEL
(@INITVAL= -30.0)

(@SOURCES=

(RunT i meVa [ue
)

)

(-30.0))

(@SLOT= RCVR COUPLING.VERIFIED

@INFATOM;RCVRCOUPLING.INF_CAT;
)

(@SLOT= RCVR GENERAL FAILURE,VERIFIED

@INFATOM_RCVR_GENERAL_FAILURE.INF_CAT;

)

(@RULE= RULE01 DEVELOP DIAGNOSTIC STRATEGY

@COMHENTS="T_his rule tests th-e signal power

Level symptoms of aLL fault states against the
obserrved tevet. ALL matches are created in class

of Level 1 FauLt States.";@WHY="A diagnostic

strategy must be developed before LeveL 1
Diagnostics can begi

n.";
(@LHS=

(Retrieve ("CH1RCV.nxp")
(@TYPE=NXPDB;@FILL=ADD;@FWRD=FALSE;@LINKNOWN=TRUE;\

@NARE="]Narne!";@PROPS=INF_CAT;@FIELDS="INF_CAT";\
))

(Execute ("TestNutt_Vatue')

(@ATOM1D=<]FAULT_STATESI>.POWERLEVEL_OUT;\
@STRING=u@SUPERSET,@TEST=@V(CURRENT_SUBSYSTEH.POt_E

R LEVEL OUT),\
_ETURN_LEVEL_IFAULT_STATES,@COMP=STRINGU;\
))

)

(@HYPO= DeveLop Diagnostic Strategy)
(@RNS=

(Do (Levet_l_Diagnostics)
(Level_l_Diagnostics))

)

)

(@RULE=

RULE11EVALUATE_REJECTED_CONFIDENCE_FACTORS
(@LHS=

(<= (\CURRENT_FAULT.NAME\.CF) (-0.9))
)
(@HYPO=

EvaLuate_FauLt_State_Confidence_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NAHE\.CONFIDENCE)
("REJECTED"))

(Let (\CURRENT_FAULT.NAHE\.VERIFIED)
(FALSE))

)

)

(@RULE=

RULE10 EVALUATE IMPROBABLE CONFIDENCE_FACTORS
(@LHS=

(<= (\CURRENT_FAULT.NAME\.CF) (-0.75))

(> (\CURRENT_FAULT.NAME\.CF) (-0.9))
)

(@HYPO=

EvaLuate_FauLt_State_Confidence_Factors)
(@RNS=

(Let (\CURRENT_FAULT.NAHE\.CONFIDENCE)
(i, I MPROBABLE"))

)

)

179

(@RULE=

RULE09EVALUATE_UNLIKELY_CONFIDENCE_FACTORS
(@LHS=

(<= (\CURRENT_FAULT.MANE\.CF) (-0.5))

(> (\CURRENT_FAULT.NANE\.CF) (-0.75))
)

(@HYPO=

EvaLuate_FauLt State_Confidence_Factors)
(@RHS=

(Let (\CURRENT FAULT.M/U4E\.CONFIDENCE)
("UNLIKELY"))

)

)

(@RULE= RULEO8EVALUATE_CONFIDENCE_FACTORS
(@LHS=

(<= (\CURRENT_FAULT.NANE\.CF) (-0.25))
(> (\CURRENT_FAULT.NAME\.CF) (-0.5))

)

(@HYPO=

Evatuate_FauttState_Confidence_Factors)
(@RHS=

(Let (\CURRENT FAULT,NANE\.CONFIDENCEJK
,,))

)
)

(@RULE= RULEOT__EVALUATE_UNKNO_NCONFIDENCEFACTORS
(@LHS=

(> (\CURRENT_FAULT.NANE\.CF) (-0.25))

(< (\CURRENT_FAULT.NANE\.CF) (0.25))
)

(@HYPO=

EvaLuate_FauLt State_Confidence_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NANE\.CO_FIDENCE)
("UNKNOWN"))

)

)

(@RULE= RULEO6EVALUATE_CONFIDENCE_FACTORS
(@LHS=

(>= (\CURRENT_FAULT.NARE\.CF) (0.25))
(< (\CURRENT_FAULT.N/U4E\.CF) (0.5))

)
(@HYPO=

EvaLuate Fautt State_ConfidenceFactors)
(eRRS=

(Let (\CURRENT_FAULT.NN4E\.CONFIDENCE]K
"))

)

)

(@RULE=

RULEOSEVALUATE..POSSIBLECONFIDENCE_FACTORS
(@LHS=

(>= (\CURRENT_FAULT.NANE\.CF) (0.5))
(< (\CURRENT_FAULT.NANE\.CF) (0.75))

)

(@HYPO=

Evatuate_FauttState_Confidence_Factors)
(@RHS=

(Let (\CURRENT_FAULT.NAME\.CONFIDENCE)
("POSSIBLE"))

)

)

(@RULE=

RULEO4EVALUATEPROBABLE_CONFIDENCE_FACTORS
(@LHS=

(>= (\CURRENT_FAULT.NANE\.CF) (0.75))
(< (\CURRENT_FAULT.NANE\.CF) (0.9))

)

(@HYPO=
EvaLuateFaut t_St at e_Conf i dence_Fac to rs)

(@eH_--

(Let (\CURRENT_FAULT. NAME\. CONFIDENCE)
("PROBABLE"))

)

)

(_ULE=

RULEO31EVALUATE_ESTABLISHEDCONFIDENCE_FACTORS
(@LHS=

(>= (\CURRENT FAULT,NAME\.CF) (0.9))
)
(@HYPO=

EvaLuate FauLt_StateConfidence_Factors)
(@RH_=

(Let (\CURRENT_FAULT.NAHE\.CONFIDENCE)
("ESTABLISHED"))

(Let (\CURRENT_FAULT.NAME\.VERIFIED)
(TRUE))

)
)

(@RULE= RULE_ INITIALIZE LEARNING DATABASE
@COMHENTS="T--his pule initialize_ the infefence

categorys of all fault states to 1.0 in the
CH1RCV,nxp database";@WHY="At times in may be

necessary to forget everything Learned about the
diagnostic strategy.";

(@LHS=

(Yes (OPENGATE))
)

(@HYPO= InitiaLize_Database)
(@RHS=

(Do (1.0) (<IFAULT_STATESI>.INF_CAT))
(Write ("CH1RCV.nxp")

(@TYPE=NXPDB;@FILL=NEW;_INKNOWN=TRUE;@NAHE="<IFAUL

T STATESI>";\
_ROPS=INF_CAT;@FIELDS="|NF_CAT";))

)

)

(@RULE= RULE02 PURSUE LEVEL_I_DIAGNOSTIC STRATEGY
@COHHENTS=;_TThis -ruLe effects L'evet 1

Diagnostics by placing all fault states on the
agenda";_HY="Levet I Diagnostics is the first step

in the diagnostic process";
(@LHS=

(Yes

(<[LEVEL_I_FAULT_STATES[>.VER]FIED))
)

(@HYPO= Level 1_Diagnostics)
)

(@RULE= RULEO3QUALIFICATION_OF_SENSOR_LEVEL
(@LHS=

(>= (\CURRENT_SENSOR.NANE\.ERROR) (0))
)

(@HYPO= Sensor_LevetDescription.HIGH)
(@RHS=

(Let (\CURRENT SENSOR.NANE\.LEVEL)
("HIGH"))

)
)

(_ULE= RULE20 GENERIC TEST FOR C_ENT COUPLING

_NENTS="T--his ru_e tests the signal _wer

Level symptoms of all fault states against the
obserrved Level. ALL matches are created in class

of Level 1 Fault States.";_HY="A diagnostic

strategy must be developed before Level 1
Diagnostics can begi

n.";

180

(@LHS=

(Reset (CURRENT CONPONENT.COUPLI_G))

(Yes (CURRENT COMPONENT.COUPL1NG))
)

(@HYPO= Test_Component_CoupLing)
(@RHS=

(Do (0.9) (\CURRENT_FAULT.NAME\.NB))
)

181

D.2 CHANNEL 2 RECEIVER SUBSYSTEM

(@VERSIO_J= 020)

(@PROPERTY = DESCRIPTION @TYPE=String;)

(@PROPERTY = INF CATEGORY @TYPE=FLoat;)
(@PROPERTY= POWER LEVEL OUT @TYPE=String;)
(@PROPERTY = VERIFIED - @TYPE=Boolean;)

(@CLASS= FAULT STATES
(@SUBCLASSES=-

HIGH POWER FAULT STATES
LOW POWER _AULT STATES

ZERO._POWER_FAUL__STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@CLASS= HIGH_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@CLASS= LOW POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@CLASS= SUBSYSTEMS

(@PROPERTIES=

POWER_LEVEL OUT
)

)

(@CLASS= ZERO_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= Diagnose_HIGH_Power_Fault_States
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

(@OBJECT= Diagnose LOW Power_Fault_States
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

(@OBJECT= Diagnose_ZERO_Power_Fault_States

(@PROPERTIES=

VaLue @TYPE=BooLean;
)

(@ORJECT= IFPC_/_nptifier_Couplir__toSystem
(@CLASSES=

ZERO_POWERFAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(_BJECT= IFPC_/_npLifier_GeneraL_Faiture
(@CLASSES=

ZERO_POWER_FAULT_STATES
HIGH POWER FAULT STATES

LOW_OWER'FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERIFIED

)

)

(@OBJECT= IFPC_Aznptifier_Power_Supp[y_Faiture
(@CLASSES=

ZERO_PO44ER_FAULTSTATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@OBJECT= IFPC_Attenuator_Coupling_to_System
(@CLASSES=

ZERO_POWERFAULT_STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= IFPC_Atter_Jator_GeneraL_FaiLure
(@CLASSES=

ZERO_POWERFAULT_STATES
HIGH POWER FAULT STATES

LOW_POWER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT= IFPC_Attenuator_Setting_Is_Incorrect
(@CLASSES=

HIGH PO_/ER FAULT STATES
LOW POWER F'AULT STATES

ZERO_POWER._FAUL_._S TAT ES
)

(_°ROPERT I ES=
DESCRI PT I ON

/NF CATEGORY
VERTF I ED

)

(@OBJECT=

Local_Oscil[ator_Frequency_Setting_Is_Incorrect
(@CLASSES=

ZERO POWER FAULT STATES

LOW.POWER_FAUL TjTATE S

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= LocaL_OsciLLator_GeneraL_FaiLure
(@CLASSES=

LOW POWER FAULT STATES

ZERO_POWER,...FAUL_,_.STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT=

Locat Osci[tator Out of Phase_Lock Alarm
(_CLASSES=

ZERO POWER FAULT STATES

LOW POWERjAULTSTATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
vERTFIED

)

)

(@OBJECT=

Local OsciLLator Out of Phase_Lock Test
(_CLASSES=

ZERO POWER FAULT STATES

LOW...POWER__AULT_STATES

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= Locat_Oscittator_Power_Suppty_Faiture
(@CLASSES=

ZERO POWER FAULT STATES

LOW_POWER...FAULT_.STATES
)
(@PROPERTIES=

DESCRIPTION

1NF CATEGORY
VERTFIED

)
)

(@OBJECT=

Local Oscit[ator_Signat_Pouer_Leve[_lsLOW
(_CLASSES=

ZERO POWER FAULT STATES

LOW_POI,/ER_FAULT_STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERIFIED

)
)

(@OBJECT= Receiver_Unit_Coupting_toSystem
(@CLASSES=

ZERO_PONERFAULTSTATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= Receiver_Unit_Generat_Faiture
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO_POWER_FAULt_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(_)BJECT=

Receiver_Unit_Primary_Power._Supp[y_Failure
(@CLASSES=

ZERO_POtJERFAULT..STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT=

Receiver_Unit_Secondary_Power_SuppLy_Faiture
(@CLASSES=

ZERO_POt4ERFAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= Undefined_General_Failure
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO_POt,/ER..FAUL'T_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY

182

VER[F]ED

)

)

(_OBJECT=

ZZ_Outstand|ngFautt_States_for_Channet_2_Receiver

_System
(_CLASSES=

HIGH PO_/ER FAULT STATES
LOM PO_ER _AULT ETATES

ZERO_POWER..FAUL__STATES

)
(@PROPERTIES=

DESCRIPTION

]NF CATEGORY
VERTFIED

)

)

(@SLOT= IFPC_Amplifier_Coupling_to_System.VER[FIED

@INFATON=lFPC_.AmptifierCoupting_to_System. lNF_CAT
EGORY;

)

(@SLOT= |FPC _tifier General Failure.VERIFIED

@INFATOM=IFPC_A_tifier General Failure. INF CATEGO

RY;

)

(@SLOT=

IFPC_AmptifJer_Power_Supply_Failure.VERIF%ED

@INFATOM=IFPC_Amplifier_Power_Supply_Failure. INFC
ATEGORY;
)

(@SLOT=]FPCAttenuator_Coupling_toSystem.VERIF[ED

@[NFATON=IFPC_Attenuator_Coupling_to_System. INF_CA
TEGORY;

)

(@SLOT= [FPC_Attenuator General FaiLure.VERIFIED

@|NFATOM=IFPCAttenuator_GeneraL_FaiLureo]NF_CATEG
ORY;
)

(@SLOT=

]FPC_Attenuator_Setting_[s_lncorrect.VER]F]ED

@[NFATOH=[FPC_Attenuator_Setting_Is_Incorrect.]NF_
CATEGORY;
)

(@SLOT=

Local Oscillator_Frequency_Setting_[s_]ncorrect.VE
R]F]ED

@]NFATOH=Locat_Osciltator_Frequency_Setting_Is_]nc

orrect. INF_CATEGORY;
)

(@SLOT= Local_Oscillator_General_Failure.VERlF]ED

@INFATON=Local_Osciltator_Generat_Faiture.]NF_CATE
GORY;

)

(@SLOT=

LocaL..Oscittstor Out of Phase_Lock__.ALarm.VER[FIEO

183

@INFATOH=Locat_Oscittator Out of Phase Lock. Atarm

.INF_CATEGORY;
)

(@SLOT=

LocaL_OsciLLator Out of Phase Lock Teat.VERIFIED

@]NFATON=Local OscJ||ator Out of Phase.Lock Test.
]NF_CATEGORY;
)

(@SLOT=

Locat_Oscillator_PowerSupply_Faiture.VERIFlED

@INFATON=Local_Oscillator_Power_SupptyFsiture.lNF

_CATEGORY;
)

(@SLOT=

Locat_Oscillator_Signal_PowerLevetls__LOM.VERIFIED

@[NFATON=Local OscilLator_Signst_Power_Levet_Is_LO
W.INF_CATEGORY_
)

(@SLOT= Receiver_Unit_Coupting_to_System.VERIFlED

@INFATOM=Receiver_Unit_Coupling_toSystem.INF_CATE
GORY;

)

(@SLOT= Receiver_Unit_GeneraL_Failure.VERIFIED

@INFATOM=Receiver_UnitGenerstFsiLure. INF_CATEGOR
Y;
)

(@SLOT=

Receiver_Unit_PrimaPy_PowerSuppty_Fai[ure.VERlFlED

@lNFATOH=Rece_ver_UnitPrimary_Power_Supp[y_Fai[ur

e. INF_CATEGORY;
)

(@SLOT=

Receiver_Unit_Secondary_Power_Suppty_Fsilure.VERIF
ZED

@INFATOH=Receiver_UnitSecondany_Pouer_Suppty_Fait

ure. INF_CATEGORY;
)

(@SLOT= Undefined_General_Failure.VERIFIED

@]NFATOH=UndefinedGeneratFaiture. INF_CATEGORY;
)

(@SLOT=

ZZ_OutstandingFault_States for Channet_2_Receiqer

_System.VERIFIED

@iNFATON=ZZOutstanding_Fautt_Ststes for Channel_2

_Receiver_System. lNF_CATEGO\
RY;
)

(@RULE= R1

(@LHS=

(is (<ISUBSYSTENSI>.POWER_LEVEL_OUT) _HIJ$
(Yes

<1 I(IH]GH_POWER_FAULT_STATESm>.VERIFIED))
)

(@HYPO= Diagnose_HIGHPower_Fautt_States)
)

(@RULE= R2

(@LHS=

(Is (<:SUBSYSTEMSI>.POWER_LEVEL_OUT)
("LOW"))

(Yes

(<ILOW_POgER_FAULTSTATESI>.VERIFIED))
)

(@HYPO= Diagnose LOW Power_FaultStates)
)

(@RULE= R3
(@LHS=

(Is (<ISUBSYSTEMSI>.POWERLEVEL_OUT)
("ZERO"))

(Yes

(<IZERO..PO_/ER_FAULT_STATES_>.VERIFIED))
)

(@HYPO= Diagnose..ZEROPower_Fau[t_States)
)

184

APPENDIX E

MATRIX SWITCH SUBSYSTEM

DIAGNOSTIC KNOWLEDGE BASE

(@VERSION= 020)

(@PROPERTY= DESCRIPTION @TYPE=String;)
(_PROPERTY= INF CATEGORY @TYPE=FLoat;)

(_PROPERTY= POgER LEVEL OUT @TYPE=String;)
(@PROPERTY= VERIFIED -@TYPE=Boolean;)

(@CLASS= FAULT_STATES
(@SUBCLASSES=

HIGH POWER FAULT STATES

LOW POWER FAULT STATES

ZERO POWER.FAUL__STATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY

VERIFIED

)

(_OBJECT= Diagnose_HIGH_Power Fault_States
(@PROPERTIES=

Value @TYPE=Boo[ean;

)
)

(@OBJECT= Diagnose LOg Power_Fault_States
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

(_OflJECT= Diagnose_ZERO_Power Fault_States
(@PROPERTIES=

Value @TYPE=Boolean;
)

)

) (_OBJECT= IFPC_Amp[ifier_Coupting_toSystem
(@CLASSES=

(@CLASS= HIGH_POWER_FAULT_STATES ZERO_POWER_FAULT_STATES
(@PROPERTIES=)

DESCRIPTION (@PROPERTIES=
INF CATEGORY DESCRIPTION
VERIFIED INF CATEGORY

) VERTFIED

))

(@CLASS= LOW POWER_FAULT_STATES
(gPROPERTIES= (gOBJECT= IFPC_Amptffier_General_FaiLure

DESCRIPTION (@CLASSES=

INF CATEGORY ZERO_POWER_FAULT_STATES
VERTFIED HIGH POWER FAULT STATES

) LOW_POWER_FAULT_STATES
))

(@PROPERTIES=

(_CLASS= SUBSYSTENS DESCRIPTION
(@PROPERTIES= INF CATEGORY

POWER_LEVEL OUT VERIFIED
))

))

(@CLASS= ZERO_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= IFPC_Amptifier_Power_Suppty_Faiture
(@CLASSES=

ZERO_POWER_FAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

185

)
)

(@OBJECT= IFPCAttenuatorCoupting_toSystem
(@CLASSES=

ZERO_POtJER_FAULTSTATES
)
(_PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= IFPC_Attenuator General FaiLure
(@CLASSES=

ZERO_.POgERFAULTSTATES
HIGH POWERFAULT STATES
LOIJ_PO_ERFAULT_STATES

)
(_PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(_OBJECT= IFPC Attenuator_Setting Is_Incorrect
(@CLASSES=

HIGH POWERFAULT STATES
LOWPOWERFAULT STATES
ZERO_.POWERFAULT_STATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

(@OBJECT=
Matrix_Switch_Configuration..]s_Incorrect

(@CLASSES=
ZERO_POWERFAULTSTATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= Matrix Switch_Generat_Faiture
(@CLASSES=

ZERO_POWER_FAULTSTATES
NIGH POWERFAULT STATES
LOW_POWER.FAULTSTATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= Matrix_Switch_Path_Setting_ls_Incorrect
(@CLASSES=

ZERO_POWER_FAULTSTATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

186

)
)

(@OBJECT= Undefined_Generat_Faiture
(@CLASSES=

HIGH POWERFAULT STATES
LOWPOWER_AULT STATES
ZERO.._POWER,_.FAUL_...STATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT=
ZZOutstanding_Fautt_States for MatrixSwitchSyst
em

(@CLASSES=
HIGH POWERFAULT STATES
LOWPOWERFAULT STATES
ZERO_POWER_FAULT_STATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
vERTFIED

)
)

(@SLOT= IFPC_AmpLifier_Coupting_toSystem.VERIFlED

@INFATON=lFPC..AmptifierCoupLing_toSystem.INF_CAT
EGORY;
)

(@SLOT= IFPC_Amptifier_GeneratFaiture.VERlFlED

@INFATOH=IFPC_Amp[ifier.Generat_FaiLure. INF_CATEGO
RY;
)

(@SLOT=
[FPCAmptifier_Power_SuppLy_FaiLure.VERIFIED

@INFATOM=IFPC_AmptifierPower_Suppty_Failure.lNF_C
ATEGORY;
)

(@SLOT= IFPC_Attenuator_Couptir_j_to_Systern.VERlFlED

@[NFATOM=IFPC_Attenuator_Coupting_to_System.INF_CA
TEGORY;
)

(@SLOT= IFPC_AttenuatorGeneral_Faiture.VERIFIED

@INFATOM=IFPC_Attenuator_General_Faiture.INF_CATEG
ORY;
)

(@SLOT=
IFPC Attenuator_Setting Is_Incorrect.VERIFIED

@INFATOH=lFPC_Attenuator_Setting_ls_Incorrect.INF_
CATEGORY;
)

(@SLOT= Undefined_Generat_Faiture.VERlFlED

@INFATOH=Undefined_Generat_Faiture. INF_CATEGORY;
)

(@SLOT=
ZZ_Outstanding_Fault_States_for_Natrix_Switch_Syst
en.VERIFIED

@lNFATON=ZZ_Outstanding_Fau[t_$tates for Natrix_Sw
itch_$ystem, iNF_CATEGORY;
)

(@RULE= R1
(@LHS=

(IS (<_SUBSYSTEMSI>.POgER_LEVEL_OUT)
("HIGH"))

(Yes
(<IHIGH_POWER_FAULTSTATESI>.VERIFIED))

)
(@HYPO= Diagnose_HiGH_Poger_Fautt_States)

)

(@RULE= R2
(aLHS=

(Is (<ISUBSYSTEHS_>.POWER_LEVEL_OUT)
(,,LOg,=))

(Yes
(<fLOg POgER_FAULT STATES[>.VERIFIED))

)
(@HYPO= Diagnose LOg Power FauLt_States)

)

(@RULE= R3
(@LHS=

(Is (<ISUBSYSTEHS_>.POWER_LEVEL_OUT)
("ZERO"))

(Yes
(<_ZERO_POWER_FAULT_STATESI>.VERIFIED))

)
(@HYPO= Diagnose_ZERO_.Power_Fautt_States)

)

187

APPENDIX F

UP-CONVERTER SUBSYSTEMS

DIAGNOSTIC KNOWLEDGE BASES

F.1 CHANNEL 1 UP-CONVERTER SUBSYSTEM

(@VERSION= 020)

(@PROPERTY= DESCRIPTION @TYPE=String;)

(@PROPERTY= INF CATEGORY @TYPE=FLoat;)
(@PROPERTY= POWER_LEVEL_OUT @TYPE=String;)

(@PROPERTY= VERIFIED @TYPE=Boolean;)

(@CLASS= FAULTSTATES
(@SUBCLASSES=

HIGH PO_/ER FAULT STATES
LOM POWER FAULT STATES

ZERO...POWER_FAUL__STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERIFIED

)

)

(@CLASS= HIGH_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@CLASS= LOt__POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@CLASS= SUBSYSTENS
(@PROPERTIES=

POtJER_LEVEL_OUT
)

)

(@CLASS= ZERO_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@OBJECT= Diagnose HIGH_Power_Fault_States
(@PROPERTIES=

VaLue @TYPE=Boolean;
)

)

(@OBJECT= Diagnose_LOWPower_Fautt_States
(@PROPERTIES=

Value @TYPE=Bootean;
)

)

(_)BJECT= Diagnose_ZERO_Power_FauLt_States
(@PROPERTIES=

Value @TYPE=BooLean;
)

)

(@OBJECT= HPADIPC_Attenuator_Coupling_toSystem
(@CLASSES=

ZERO POWER FAULT STATES
)

(@PROPERTIES=
DESCRIPTION

1NF CATEGORY
VERTFIED

)

)

(@OBJECT= HPADIPC_Attenuator_Generat_Faiture
(@CLASSES=

ZEROPOWER_FAULTSTATES
HIGH POt/ER FAULT STATES

LOW.POWER_FAULT...STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECTffi HPADIPC_Attenuator..Setting_Is_Incorcect

188

(@CLASSES=
HIGH POWER FAULT STATES

LOW POIgER FAULT STATES

ZE RO,_POWER_FAUL_._STAT ES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

(@OBJECT= HPAIPC_Amp[ifier_Coupting_to..System
(@CLASSES=

ZERO._POWER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPAIPC_Amptifier_Generat_FaiLure
(@CLASSES=

ZERO PC_ERFAULT_STATES
HIGH POWER FAULT STATES

LOW.,.POWER_FAULT..,STATES

)
(@PROPERTIES=

DESCRIPTION
]NF CATEGORY

VERTFIED

)

)

(@OBJECT= HPAIPC__Jnplifier_Power_SuppLy_FaiLure
(@CLASSES=

ZEROPOWER_FAULT_STATES
)

(gPROPERT]ES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPAlPC_AZtenuator_Coupting_to_System

(@CLASSES=

ZERO_POWER_FAULT_STATES

)

(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT= HPAIPC_Attenuator_General_Failure

(@CLASSES=

ZEROPOWER_FAULTSTATES
HIGH POWER FAULT STATES

LOW_POWER_[AULT_ETATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPAIPC_Attenuator_Setting_Is_Incorrect
(@CLASSES=

189

HIGH POt_ER FAULT STATES
LOW POWER _AULT STATES

ZERO_POWER_FAULt_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT=

Local OscfI[ator_FrequencySettingls_Incorrect
(_CLASSES=

ZERO POWER FAULT STATES

LOW_FOWER_._AULT..STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= Local_Osciltator_Generat_FaiLure
(@CLASSES=

LOW POWER FAULT STATES

ZERO_POWER_.FAULT'STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT=

Loca[Oscittator Out of Phase_Lock_ALarm
(_CLASSES=

ZERO POWER FAULT STATES

LOW..POWER..FAULT..STATES
)

(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT=

Local OsciLLator Out of Phase_Lock Test
(_CLASSES=

ZERO POWER FAULT STATES

LOW POWER_AULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= Locat_OsciLLator_Power_Suppty_FaiLure
(@CLASSES=

ZERO POWER FAULT STATES

LOW_POWERjAULTjTATES
)

(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(_OBJECT=
LocalOsci[[ator_SignalPower_Levells_LOW

(_CLASSES=
ZEROPOWERFAULTSTATES
LOt/POt_ER_FAULTSTATES

)
(_°ROPERT! ES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(_OBJECT= Nixer Unit Coup(ing to_System
(@CLASSES=

ZERO_PO_JERFAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@OBJECT= Mixer_Unit_GeneraL_FaiLure
(_CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO..POWER_FAUL_STATES
)

(_PROPERTIES=
DESCRIPTION

INF CATEGORY
VERIFIED

)
)

(_OBJECT= Undefined_Genera[_Fai[ure
(@CLASSES=

HIGH PO_ER FAULT STATES
LOW POWER FAULT STATES

ZER PO E FAOL _STATES
)
(@PROPERT I ES=

DESCRIPTION
1NF CATEGORY
VERTFIED

)
)

(_OBJECT=

ZZ_OutstandJng_FauLt_States for ChanneL_l_Upconver
Let_System

(@CLASSES=
HIGH PONER FAULT STATES
LOl_ POWER FAULT STATES

ZERO..POWER_FAUL__STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@SLOT =

HPADIPCAttenuator_Coupting_to_System.VERIFIED

@INFATOH=HPADIPCAttenuator_Coup[ing_to_System. lNF

CATEGORY;
)

(@SLOT= HPADIPC_Attenuator_GeneraiFa_Lure.VERIFIED

190

@INFATOH=HPADIPC_Attenuator_GeneraL_FaiLure. lMF_CA
TEGORY;
)

(@SLOT=

HPADIPCAttenuator Setting Is Incorrect.VERIFIED

@lNFATOH=HPADIPC_Atterv_tor_Settir__Is_lr_orrect.!
NF_CATEGORY;
)

(@SLOT=

HPAIPC_Amplifier_CoupLJng_to_System.VERIFIED

@lNFATOH=HPAlPC_AmpLif|er_CoupLingto_System. INF_C
ATEGORY;
)

(@SLOT= HPAIPC_AmpIifJer_GeneraL_FaiLure.VERIFIED

@INFATOM=HPAIPC_AmpLifierGeneraLFaiLure.INF_CATE
GORY;
)

(@SLOT=

HPAIPCAmptifier_PowerSuppty_FaiLure.VERIFIED

@INFATOM=HPAIPC_AmptifierPower_SupptyFaiLure. INF
_CATEGORY;
)

(@SLOT=

HPAlPC_Attenuator_Coup(ingto_System.VERIFIED

@INFATOH=HPAlPC_AttenuatorCoup[ing_toSystem. lNF
CATEGORY;
)

(@SLOT= HPAlPC_.Attenuator_Generat_Fa_[ure.VERlFIED

@INFATOH=HPAIPC..AttenuatorGenera[Fai[ure. lNF_CAT
EGORY;
)

(@SLOT=

HPA|PC Attenuator_Setting_Is IncorPect.VERIFlED

@INFATOM=HPAIPC Attenuator Setting Is_Incorrect.iN

F CATEGORY;
)

(@SLOT=

Local Oscillator_FrequencySetting_Is_Incorrect.VE
RiFiED

@INFATOM=Loca[Oscittator_Frequency_Setting_ls_lnc
orrect.lgF CATEGORY;
)

(@SLOT= Locat_OsciLLator_Generat_Faiture.VERIFIED

@lNFATOH=LocalOsciLLator_Generat_Faiture.INF_CATE
GORY;

)

(@SLOT=

LocaL_OsciLLator Out of Phase_Lock__Alarm.VERIFIED

alNFATON=LocaLOscilLator Out of Phase_Lock__ALarm

.INF_CATEGORY;
)

(@SLOT=
Locat_OscittatorOutof Phase_LockTest.VERIFIED

@lNFATON=Locat_Oscittator Out of Phase_Lock Test.
INF CATEGORY;
)

(@SLOT=

Locat_Oscf_[ator_Power_Suppty_Faiture.VERIFIED

@[NFATOH=Locat_Oscittator_Power_Suppty_Faiture.]NF
_CATEGORY;
)

(@SLOT=

Locat_OscitlatorSignal_Power_Levet_ls_LOW.VERIFIED

@INFATON=Local Oscittator_Signat_Power_Levells_LO
_.]NF_CATEGORY_

)

(@SLOT= Mixer_Unit_Couplingto_System,VER[FIED

@INFATOH=Mixer_UnitCoupling_toSystem.[NF_CATEGOR

Y;
)

(@SLOT= Mixer Unit General_Failure.VERIFIED

@]NFATOH=Mixer_Unit_General_Failure.[NF_CATEGORY;
)

(@SLOT= Undefined General Failure.VERIFIED

@]NFATON=Ur_Jefined_Generat_Failure. INF_CATEGORY;
)

(@SLOT=

ZZ_Outstar_Jing_Fault_Statesfor_Channel_l_Upconver
ter System,VER]F|E\
D

@lNFATON=ZZOutstar_HngFault_States for Channel1
_Upconverter_System. INF_CAT\
EGORY;
)

(@RULE= R1

(@LHS=

(Is (<ISUBSYSTEMS_>.PO_/ER_LEVEL_OUT)
("HIGH"))

(Yes

(<IHIGH_POWER_FAULT_STATESI>.VERIF[ED))
)

(@HYPO= Diagnose H%GH_Power Fault_States)
)

(@RULE= R2
(@LHS=

(Is (<]SUBSYSTEMSI>.POWER_LEVELOUT)
("LOW"))

(Yes

(<[LOW_POWER_FAULT_STATESI>.VERIFIED))
)

(@HYPO= Diagnose LOW Power_Fault_States)
)

(@RULE= R3

(@LHS=

(Is (<ISUBSYSTERSI>.POWER_LEVEL OUT)
("ZERO"))

(Yes (<IZERO._PO,,ER_FAULT_STATESI>.VERIFIED))
)

(@HYPO= Diagnose_ZERO_Power_FauttStates)

191

F.2 CHANNEL 2 UPCONVERTER SUBSYSTEM

192

(@VERSION= 020)
(@PROPERTY = DESCRIPTION @TYPE=String;)

(@PROPERTY= INF_CATEGORY @TYPE=FLoat;)
(@PROPERTY= POWER LEVEL OUT @TYPE=String;)
(@PROPERTY= VERIFTED - @TYPE=BooLean;)

(@CLASS= FAULT_STATES
(@SUBCLASSES=

HIGH POWER FAULT STATES
LOW POWERFAULT STATES

ZERO_POWER..FAUL__STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@CLASS= HIGH_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
1NF CATEGORY

VERTFIED

)

)

(@CLASS= LO_/_PO_/ER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@CLASS= SUBSYSTEHS
(@PROPERTIES=

POWER_LEVEL_OUT
)

)

(@CLASS= ZEROPOWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIEO

)
)

(@OBJECT= Diagnose_HIGH_Power_FauLt_States
(@PROPERTIES=

Value @TYPE=Bootean;
)

)

(@OBJECT= Diagnose LOW Power_Fault_States
(@PROPERTIES=

Value @TYPE=Boo[ean;

)
)

(@OBJECT= Diagnose_ZERO_Power FauLt_States
(@PROPERTIES=

Vatue @TYPE=Boolean;

)
)

(@OBJECT= HPADIPC_Attenuator_Coupting_to_System
(@CLASSES=

ZERO_PONER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= HPADIPC_Attenuator_General_Faiture
(@CLASSES=

ZERO_POWER_FAULT_STATES
HIGH PO_JER FAULT STATES

LOId_POIdER__AU L T_.STATE S
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERIFIED

)

)

(@OBJECT= HPADIPC_AttenuatorSettingls_lncorPect
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO._POWERFAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERIFIED

)

)

(@OBJECT= HPAIPC_Amptifier_Coupting_to_System
(@CLASSES=

ZERO_POWERFAULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

(@OBJECT= HPAIPC_Amptifier_Generat_Faiture
(@CLASSES=

ZERO_POWER_FAULT_STATES
HIGH POWER FAULT STATES

LOW_POWER__AULT_gTATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= HPAIPC_Amptifier_Power_Suppty_Faiture
(@CLASSES=

ZERO_POWER_FAULTSTATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERIFIED

)
)

(@08JECT= HPAIPC_Attenuator_Coupting_to_System
(@CLASSES=

ZERO_PO_JER_FAULTSTATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@OBJECT= NPAIPC..Attenuator_Generat_Fai|ure
(@CLASSES=

ZERO._PO_ER_FAULT_STATES
HIGH POWER FAULT STATES

LOIg_PO_/ER_AULT_STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

(@OBJECT= HPAIPC_Attenuator_Setting_Is_lncorrect
(aCLASSES=

HIGH POWER FAULT STATES
LOW POWER _AULT STATES

ZERO_.POWER_FAUL_._STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT=

Local Oscillator_Frequency_Setting_is_Incorrect
(_CLASSES=

ZERO POWER FAULT STATES

LO_.PO_ERjAULT._TATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERIFIED

)
)

(@OBJECT= Local Oscillator_General Failure
(@CLASSES=

LOW PO_ER FAULT STATES

ZERO_POWER,_FAUL__STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERIFIED

)
)

(@OBJECT= Local_Oscillator Out of Phase_Lock__Atam
(@CLASSES=

193

ZERO POWER FAULT STATES

LOW._POWER.__AULTgTATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

(@OBJECT=

Local Oscillator Out of Phase_LockTest
(_CLASSES=

ZERO PO_JER FAULT STATES

LOW_PC_ER.__AULTSTATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= Local_Oscittator_Power_SuppLy_Failure
(@CLASSES=

ZERO PONER FAULT STATES

LOW_POWER_gAULTgTATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY

VERTFIED

}

)

(@OBJECT=

LocaL_OsciLtatorSignat_Power_Levet_ls_LOW
(@CLASSES=

ZERO POWER FAULT STATES

LOW_POWER3AULT__TATES
)

(@PROPERTIES=
DESCRIPTION
]NF CATEGORY
VERTFIED

)
)

(@OBJECT= Nixer_Unit_Coupting_toSystem
(@CLASSES=

ZEROPOWER_FAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT= Mixer_Unit_General_Failure
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO POWER_FAUL__STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@OBJECT= Undefined_Generat_Faiture

(gCLASSES=
HIGHPOWERFAULTSTATES
LOgPOgERFAULTSTATES
ZERO.PO_ER_FAUL?STATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(_OBJECT=

ZZ_Outstanding_FauttStates for Channel Z..Upconver

ter_System
(@CLASSES=

HIGH POgER FAULT STATES
LOg_O_ER_AULT_TATES
ZERO_POWER,..FAUL?_STATES

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(aSLOT=

HPADiPC_Attenuator_Coupling_to_System.VERIFIED

@INFATON=HPADIPC_Attenuator_Coupting_toSystem. iNF
_CATEGORY;
)

(@SLOT= HPADIPC_Attenuator_Genera[_Failure.VERIFIED

@INFATOM=HPADZPC_Attenuator_General_Fai(ure. INF_CA
TEGORY;
)

(@SLOT=

HPADIPC_Attenuator_Sett_ng_ls_Incorrect,VERIFIED

@lNFATON=HPADIPC_Attenuator_Setting_]s_Incorrect.!
NF_CATEGORY;
)

(@SLOT=

HPAIPC_Amp[ifier_Coup[ingto_System.VERZFIED

@iNFATOM=HPAIPC_Amptifier_Coupling_to_System. INF_C
ATEGORY;

)

(@SLOT= HPAIPC_Amplifier_General_Failure.VERIFIED

@INFATOM=HPAIPC_AmpLifierGeneral_Failure. INF_CATE
GORY;
)

(@SLOT=

HPAIPC_Amptifier_Power_Supp[y_Failure.VERIFIED

@INFATOM=HPAIPC_Amplifier_Power_Supply_Failure. INF

_CATEGORY;
)

(@SLOT=

HPAiPC_Attenuator_Coupling_to_System.VER]F]ED

@lNFATOM=HPAIPC_Attenuator_Coup[ing_to_System. INF-
CATEGORY;
)

]94

(@SLOT= HPAIPCAttenuator_Generat_Fai[ure.VER[F[EO

@]NFATOM=HPA]PC_Attenuator_Genera[_Fai[ure.]NF_CAT
EGORY;
)

(@SLOT=

HPAlPC_Attenuator_Setting_Is_Xncorrect.VERIFIED

@INFATON=HPAiPC_Attenuator_Setting_Is_Incorrect.IN
F_CATEGORY;
)

(@SLOT=

Local Oscillator_Frequency_Setting_%s_%ncorrect.VE
RIFLE5

@INFATOM=Local Oscil[ator_Frequency_Setting_ls_Inc
orrect. INF_CATEGORY;

)

(@SLOT= Local_Oscillator_General_Failure.VERIFIED

@[HFATON=Locat_Oscillator_Generat_Faiture. INF_CATE

GORY;
)

(@SLOT=

Local_Dscittator Out of Phase_Lock. Alarm.VERiFIED

@INFATOH=Locat_Oscillator Out of PhaseLock..Alam
.INF_CATEGORY;
)

(@SLOT=

Local_Oscitlator Out of Phase_Lock Test.VERIFIED

@INFATOM=Local Oscittator Out of Phase_Lock Test.

INF_CATEGORY;
)

(@SLOT=

LocaL_Oscillator_Pouer_Supply_Fai[ure.VERIFIED

@INFATON=Local..OscJllator_Power_Suppty_Faiture.iNF

_CATEGORY;
)

(@SLOT=

Locat_OscilLatorSignal_PowerLeve[_Is_LOg.VERIFIED

@INFATOH=Local Oscil[ator_Signa(_PowerLevel_lsLO
W.|NF_CATEGORY_
)

(@SLOT= Hixer_UnitCoup|ing_to_System.VERIFIED

@INFATOH=HixerUnitCoupling_to_System. INF_CATEGOR
Y;
)

(@SLOT= Nixer_Unit_Genera[_Fai[ure.VERIFIED

@INFATOH=Hixer_Unit_GeneraIFailure.lNF_CATEGORY;
)

(@SLOT= Undefined General Failure.VERIFIED

@lNFATOH=Undefined_General_Failure.INF_CATEGORY;
)

(@SLOT==

ZZ Outstandi ng_Fault_St at es for_Channel_2_Upconver

ter_System.VER] FIE\
D

@INFATOM=ZZ_Outstanding_Fault_States for Channel_2

_Upconverter_System. INF_CAT\
EGORY;
)

(@RULE= R1

(@LHS=

(is (<ISUBSYSTEMS_>.POMER_LEVEL_OUT)
("HIGH"))

(Yes

(<IHIGH POWER_FAULT_STATES_>.VERIFIED))
)

(@HYPO= Diagnose HIGH_Power_Fault_States)
)

(@RULE= R2

(@LHS=

(Is (<ISUBSYSTEM$_>.POt4ER_LEVEL_OUT)
("LOW"))

(Yes

(<ILOW_PO_/ER_FAULT_STATES:>.VERIFIED))
)

(@HYPO= Diagnose LO_ Power_Fault_States)
)

(_RULE= R3

(@LHS=

(Is (<ISUBSYSTEHSI>.PERqER_LEVEL_OUT)
("ZERO"))

(Yes

(<_ZERO._PO_/ER_FAULT_STATESI>.VER]F]ED))
)

(@HYPO= DJagnose_ZERO_Power_Fau[t_States)
)

195

APPENDIX G

HIGH POWER AMPLIFIER SUBSYSTEMS

DIAGNOSTIC KNOWLEDGE BASES

G.1 CHANNEL 1 AMPLIFIER SUBSYSTEM

(@VERSION= 020)

(_°ROPERTY= DESCRIPTION @TYPE=String;)

(@PROPERTY= INF CATEGORY @TYPE=FLoat;)
(@PROPERTY= PCA_ER_LEVEL_OUT @TYPE=String;)

(@PROPERTY= VERIFIED @TYPE=Boolean;)

(@CLASS= FAULT_STATES
(@SUBCLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZER_POWER,._FAUL_,_STATES
)
(@PROPERTIES=

DESCRIPTION
]NF CATEGORY
VERTFIED

)

)

(@CLASS= HIGH_POWER_FAULT_STATES
(_PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@CLASS= LOIJ POWER_FAULT_STATES
(@PROPERTIE_=

DESCRIPTION
INF CATEGORY

VERTF]ED

)
)

(@CLASS= SUBSYSTEMS

(@PROPERTIES=

POWER_LEVEL_OUT
)

)

(@CLASS= ZERO_POWER_FAULT_STATES
(_PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(_OBJECT= Diagnose_HIGH_Power_Fault States
(@PROPERTIES=

Vatue @TYPEfBootean;
)

)

(_OBJECT= Diagnose LOW Power_Fault_States
(@PROPERTIES=

Vatue @TYPE=Boolean;
)

)

(_OBJECT= Diagnose_ZERO_Power_Fault States
(@PROPERTIES=

Vatue @TYPE=Bootean;
)

)

(_)BJECT= HPADIPC_Attenuator_Coupting_toSystem
(@CLASSES=

ZERO_POWERFAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(_OBJECT= HPADlPC_Attenuator_General_Failure
(@CLASSES=

ZERO_POWER_FAULT_STATES
HIGH POWER FAULT STATES

LOW_POiJER__AULT_STATES
)

(_PROPERTIES=
DESCRIPTION
INF CATEGORY

VERIFIED

)

)

(_OBJECT= HPADIPC_Attenuator_Setting_Is_lncorrect

196

(@CLASSES=
HIGH POWER FAULT STATES
LOWPOWERFAULT STATES

ZERO POWER_FAUL_STATES
)
(@PROPERTIES=

DESCRIPTION

]NF CATEGORY
VERTFIED

)

(@OBJECT= HPAIPC_Amplifier_Coupling_to_System
(@CLASSES=

ZERO_POWER_FAULT_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= HPAIPC_Amptifier_General_FaJlure
(@CLASSES=

ZEROPOWERFAULT_STATES
HIGH POWER FAULT STATES

LOW POWER__AULTSTATES

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@OBJECT= HPAIPC_Amp[ifierPower_Suppty_FaJture
(@CLASSES=

ZEROPOWERFAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY

VERIFIED

)
)

(@OBJECT= HPAIPC_Attenuator_Coup[ingto_System
(@CLASSES=

ZERO_POWER_FAULT_STATES
)
(@PROPERTIES=

DESCRIPTION
]NF CATEGORY
VERIFIED

)

)

(@OBJECT= HPAIPCAttenuator_Generat_Fai[ure
(@CLASSES=

ZERO POMERFAULT_STATES
HIGH POWER FAULT STATES

LOW._POWER.__AULTSTATES

)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

(@OBJECT= HPAIPC_Attenuator_Setting_Is_Incorrect
(@CLASSES=

197

HIGH POWER FAULT STATES
LOW POWER _AULT STATES

ZERO_POWER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@OBJECT=

Local Oscillator_Frequency_Setting_is_Incorrect
(_CLASSES=

ZERO POWER FAULT STATES

LOW POWER_'FAULT...STATES
)

(_:_ROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= Loca|_OscJttator_GeneraL_FaiLure
(@CLASSES=

LOW POWER FAULT STATES

ZERO_POWER_FAULt_STATES

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERIFIED

)

(@OBJECT=

Local Oscillator Out of Phase LockALarm
(_CLASSES=

ZERO POWER FAULT STATES

LOW POWER__AULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTF1ED

)

)

(@OBJECT=

Local Oscillator Out of Phase_LockTest
(_CLASSES=

ZERO POWER FAULT STATES

LC__POWER__AUL T_STATE S

)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)
)

(@OBJECT= LocaL OscilLator_Power_SuppLy_FaiLure
(@CLASSES=

ZEROPOWERFAULTSTATES
LOW_OWERjAULTjTATES

)

(_oROPERTIES=
DESCRIPTION
INF CATEGORY
vERTFIED

)
)

(6)OBJECT=
Loca|Oscittator_Signat_Power_Leve{_ls_LOt/

(_CLASSES=
ZEROPO_ERFAULT STATES

LOW_POWER ._AUL T_STAT ES
)
(aPROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(_OBJECT= Mixer Unit_Coupling_to_System
(_CLASSES=

ZERO_POWER_FAULT_STATES
)
(_PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(_OBJECT= Nixer_Unit_General_Failure
(@CLASSES=

HIGH POWER FAULT STATES

LOW POWER FAULT STATES

ZERO_POWEr_FAULt_STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(_OBJECT= Undefined_General_Failure
(@CLASSES=

HIGH POWER FAULT STATES

LOW POWER FAULT STATES

ZERO_POWER_FAU L_._STAT ES

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(_OBJECT=

ZZ_Outstanding_Fault_States_for_Channet_1_Upconver

ter_System
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER _AULT STATES

ZERO_POWER_FAUL__S TATE S
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERIFIED

)
)

(@SLOT=

HPADIPC_Attenuator_Coupling_to_System.VERIFIED

@INFATOM=HPADlPC_Attenuator_Coupling_to_System. INF
_CATEGORY;
)

(@SLOT= HPADIPC_Attenuator_Generat_FaiIure.VERIFIED

198

@INFATOW=NPADIPC_Attenuator_Generai_Faiture. INF_CA

TEGORY;

)

(@SLOT=

HPADIPC_Attenuator_Setting_Islncorrect.VERIFIED

@INFATOM=HPADIPCAttenuator_Setting_Is_Incorrect.l

NF_CATEGORY;
)

(@SLOT=

HPAIPC_An_olifier_Coupling_to_System.VERIFIED

@INFATow=HPAIPC_An_olifier_Coupting_to_System. INF_C

ATEGORY;

)

(@SLOT= HPAIPC_An_otifierGeneral_Failure.VERIFIED

@INFATOt4=HPAIPC_/_nptifier_GeneraL_Faiture.INF_CATE

GORY;
)

(@SLOT=

HPAIPC_AnNDlifier_Power_SupptyFailure.VERIFIED

@INFATOM=HPAIPC_A_tifierPower_SupplyFaiture. INF

_CATEGORY;

)

(@SLOT=

HPAIPC_Attenuator_Coupling_to_System.VERIFIED

@INFATOM=HPAIPC_Attenuator_Couptir_3_to_System. INF_

CATEGORY;
)

(@SLOT= HPAIPC_AttenuatorGenerat_Fai[ure.VERIFIED

@INFATON=HPAIPC_Attenuator_Generat_FaiLure.INF_CAT
EGORY;
)

(@SLOT=

HPAIPC_Attenuator_Setting_Is_Incorrect.VERIFIED

@INFATOM=HPAIPC_Attenuator_Setting_Is_Incorrect.IN

F_CATEGORY;
)

(@SLOT=

Locat_Oscillator_Frequency_Setting_Is_Incorrect.VE
RIFLED

@INFATOM=Loca[OsciI|ator_Frequency_Setting_Is_Inc
orrect.INF_CATEGORY;
)

(@SLOT= Local_Oscillator_General_Faiture.VERIFIED

@lNFATOM=Local_Oscillator_General_Failure. INF_CATE
GORY;
)

(@SLOT=

Locat_Oscittator Out of Phase_Lock ALarm.VERIFIED

@INFATOM=Local_Oscillator Out of Phase_Lock.._Alarm

.INF_CATEGORY;
)

(@SLOT=

Local_OscitLator Out of Phase_LockTest.VERIFlED

@]NFATE_4=Locat_Oscit[ator Out of Phase_LockTest.
INFCATEGORY_
)

(@SLOT=

Locat_Oscillator_Power_Supply_Failure.VERIFIED

@[NFATOM=Local_Osciltator_Power_Suppty_Fafture. iNF
CATEGORY;
)

(@SLOT=

Local_Osciltator_Signal_Power_Level_Is_LOW.VERIFIED

@INFATOM=Local Oscillator_Signal_Power_Levells_LO
W.INF CATEGORY_
)

(@SLOT= Mixer Unit_Coupting_toSystem.VERIFIEO

@lNFATOM=Mixer_Unit_Coupiing_to_System. ZNF_CATEGOR
Y;
)

(@SLOT= MixerUnit_GeneralFailure.VERIFIED

@INFATOM=Mixer_Unit_Generat_Faiture. iNFCATEGORY;
)

(@SLOT= UndefinedGenerat_Faiture.VERIFIEO

@INFATOM=Undefined_GeneratFaiture. INF_CATEGORY;
)

(@SLOT=

ZZ_OutstandingFaultStates for Channel_l_Upconver
ter_System.VERIFIE\
D

@lNFATOM=ZZ_Outstanding_Fautt_$tates for Channet l

UpconverterSystem.ZNF_CAT\
EGORY;
)

(@RULE= R1

(@LHS=

(is (<[SUBSYSTEMSI>.POWER_LEVELOUT)
("HIGH"))

(Yes

(<IHIGH POWER FAULT STATES_>.VERIFIED))
)

(@HYPO= Diagnose_HIGH_Power_Fault_States)
)

(@RULE= R2
(@LHS=

(is (<ISUBSYSTEHSI>.POWER_LEVELOUT)
("LOW"))

(Yes

(<fLOW POWER FAULT STATESI>.VERIFIED))
)

(@HYPO= Diagnose LOW PowerFaultStates)
)

(@RULE= R]

(@LHS=

(is (<ISUBSYSTEMSI>.PO_ER_LEVELOUT)
("ZERO"))

(Yes (< IZERO__R_FPLILT_STATES I>.VERI FI ED))
)

(@HYPO= Diagnose ZERO_Power_FauttStates)

199

G.2 CHANNEL 2 AMPLIFIER SUBSYSTEM

2oo

(@VERSION= 020)

(@PROPERTY= DESCRIPTION @TYPE=String;)
(_PROPERTY= INF CATEGORY @TYPE=F{oat;)
(@PROPERTY= POWER LEVEL OUT @TYPE=String;)

(@PROPERTY= VERIFTED - @TYPE=BooLean;)

(_LASS= FAULT_STATES
(@SUBCLASSES=

HIGH POWER FAULT STATES
LOE/ POWER _AULT STATES

ZERO_POWER__FAUL__STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

(@CLASS= HIGH_POWER_FAULT_STATES
(_PROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(gCLASS= LOWPOWER_FAULT_STATES
(gPROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@CLASS= SUBSYSTEMS

(@PROPERTIES=

PONER_LEVEL_OUT
)

)

(@CLASS= ZERO_POWER_FAULT_STATES
(@PROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@C}BJECT= Diagnose_HIGH_Power_FauLt_States
(@PROPERTIES=

VaLue @TYPE=Bootean;

)
)

(_OBJECT= Diagnose LOW Power_FauLt_States
(@PROPERTIES=

VaLue @TYPE=BooLean;
)

)

(aOBJECT= Diagnose_ZERO_Power_FauLt_States
(@PROPERTIES=

VaLue @TYPE=BooLean;

)

)

(_K)BJECT= HPADIPC_Attenuator_Coupting_to_System
(@CLASSES=

ZERO POWER_FAULT_STATES
)
(_PROPERTIES=

DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPADIPC_Attenuator_Generat_Faiture
(@CLASSES=

ZERO POWER FAULT STATES
HIGH-POWER-FAULT-STATES

LOW POWER__AULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(_OBJECT= HPADIPC..Attenuator_Setting_lslncorrect
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO..POWER..FAUL_..STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(@OBJECT= HPAIPC_AnNotifier_Coupting_to_System
(@CLASSES=

ZEROPOWERFAULTSTATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

(_OBJECT= HPA1PC_/_nplifier_Generat_Faiture
(@CLASSES=

ZERO_POWER_FAULT_STATES
HIGH POWER FAULT STATES

LOWjOWER_._AULT_STATES
)
(@PROPERTIES=

DESCRIPTION
INF CATEGORY

VERIFIED

)

)

(_OBJECT = HPAIPC..A_4_tifier_Power_Sul_oLy_Faiture
(@CLASSES=

ZERO_POWER_FAULT STATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPAlPC_Attenuator_Couplingto_System
(@CLASSES=

ZERO_PO_ER_FAULTSTATES
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= HPAlPC_AttenuatorGenerat_Failure
(@CLASSES=

ZERO_PO_JER_FAULTSTATES
HIGH POWER FAULT STATES

LO__POWER__AULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(_BJECT= HPAIPCAttenuatorSetting_Is_Incorrect

(@CLASSES=

HIGH POt_ER FAULT STATES

LOW POWER _AULT STATES

ZERO_POWER_FAULt_STATES

)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)

(@OBJECT=

Local Oscillator_Frequency_Setting_Is_Incorrect
(_CLASSES=

ZERO POWER FAULT STATES

LOW_POWER_FAULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT= Local_Oscillator_General_Failure
(@CLASSES=

LOW POWER FAULT STATES

ZERO_.POWER_FAUL__STATES

)

(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT=

Local_Oscillator Out of Phase_Lock Alarm

201

(@CLASSES=
ZEROPOWERFAULTSTATES
LO__POWER__AULT.STATES

)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT=

Local Oscillator Out of Phase_LockTest
(_CLASSES=

ZERO POKIER FAULT STATES

LOW_POWER_AULTSTATES

)

(@PROPERTIES=

DESCRIPTION

INF CATEGORY

VERTFIED

)

)

(@OBJECT= Locat_OsciItator_Power_SupptyFaiture
(@CLASSES=

ZERO POWER FAULT STATES

LOW_POWER.._AULT_STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

)

(@OBJECT=

Local Oscillator_SignalPower_Level_Is_LOW
(_CLASSES=

ZERO POWER FAULT STATES

LOW._POWERjAULT..STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

)

(@OBJECT= Mixer_Unit_Coupling_to_System
(@CLASSES=

ZERO_POWERFAULT_STATES
)

(@PROPERTIES=
DESCRIPTION
INF CATEGORY
VERTFIED

)

(@OBJECT= Mixer_UnitGeneraL_Faiture
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER FAULT STATES

ZERO_POUER_.FAUL__STATES
)

(@PROPERTIES=
DESCRIPTION

INF CATEGORY
VERTFIED

)

(_OBJECT= Undefined_Generat_Faiture
(@CLASSES=

HIGH PO_/ER FAULT STATES
LOg POgER _AULT STATES

ZERO_POgER FAULt_STATE S
)
(@PROPERTIES=

DESCRIPTION

INF CATEGORY
VERTFIED

)
)

(_OBJECT=

ZZ_Outstandfng_Fautt_States for Channet_2_Upconver

ter_System
(@CLASSES=

HIGH POWER FAULT STATES
LOW POWER _AULT STATES

ZERO_POWER_FAULt_STATES

)
(_PROPERTIES=

DESCRIPTION
INF CATEGORY

VERTFIED

)

)

(@SLOT=

HPADIPC_Attenuator_CoupLing_to_System.VERIFIED

@INFATON=HPADlPC_Attenuator_Coupt_ng_to.System. lNF

_CATEGORY;
)

(@SLOT= HPADIPCAttenuatorGenerat_Failure.VERIFIED

@INFATON=HPADIPC_Attenuator_General_Failure. INF_CA

TEGORY;
)

(@SLOT=

HPADIPCAttenuator_Setting_Is_Incorrect.VERIFlED

@lNFATON=HPADlPC_Attenuator_Setting_IsIncorrect. I
NF_CATEGORY;
)

(@SLOT=

HPAIPC_Amptifier_Coupling_to_System.VERIFiED

@INFATON=HPAIPC_A_lifier_Couptin9_to_System. iNF_C
ATEGORY;
)

(@SLOT= HPAIPC_Amptifier_Genera[Failure.VERIFIED

@INFATON=HPAIPCAmpIifier_General_Failure. INF_CATE
GORY;
)

(@SLOT=

HPAiPC_AmpLifier_Power_Suppty_FaiLure.VERiFIED

@INFATON=HPAIPC_Amplifier_Power_Suppty_Faiture.INF

_CATEGORY;
)

(@SLOT=

HPAIPC_Attenuator_Coupling_to_System.VERlFlED

@INFATON=HPAiPC_Attenuator_Coupling_to_System. INF-
CATEGORY;

202

)

(@SLOT= HPAIPCAttenuatorGenerat_Faiture.VERlFIED

@INFATON=HPAIPC_AttenuatoP_GeneraL_FaiLure. INF_CAT
EGORY;
)

(@SLOT=

HPAIPC_Attenuator_Setting_Is_incorrect.VERIFIED

@iNFATOH=HPAIPC_Attenuator_Setting_Is_Incorrect. IN
F_CATEGORY;
)

(@SLOT=

Local Oscittator_Frequency_Setting_ls_lncorrect.VE
RIFIED

@INFATOR=Locat Osciltator_Frequency_Setting_Is_Inc
orrect. INF_CATEGORY;

)

(@SLOT= Local_Oscillator_General_Failure.VERIFIED

@iNFATON=Locat_Oscittator General FaiLure. INF_CATE

GORY;
)

(@SLOT=

Local_Oscillator Out of Phase_Lock ALam.VERIFIED

@iNFATOH=Locat Oscillator Out of Phase_Lock Alarm

.INF_CATEGORY;
)

(@SLOT=

Local_Oscillator Out of Phase_Lock Test.VERIFIED

@IHFATOH=LocaI Oscittator Out of Phase_Lock Test.
INF_CATEGORY;
)

(@SLOT=

Local_Oscillator_Power_SuppLy_FaiLure.VERiFIED

@INFATOH=Locat Oscillator_Power Suppty_FaiLure.lNF

_CATEGORY;
)

(@SLOT=

LocaL_OscitLator_Signat_Power_LeveL_Is_LOt_.VERIFIED

@INFATOH=LocaL OsciLtator Signat_Power_Levet_ls_LO
W.INF_CATEGORY_
)

(@SLOT= Nixer_Unit_Coup|ing_to_System.VERlFIED

@INFATON=Mixer._Unit_CoupLing_toSystem. INFCATEGOR

Y;
)

(@SLOT= Nixer_Unit_GeneraL_FaiLure.VERIFIED

@]NFATOH=NixerUnit_GeneraI_FaiLure. INF_CATEGORY;
)

(@SLOT= Undefined_General_Failure.VERIFIED

@INFATOH=Undefined_GeneraL_FaiLure. INF_CATEGORY;
)

(@SLOT=

ZZ_Outstanding_Fault_States for Channet_2_Upconver

ter_System.VERIFlE\
D

@lNFATON=ZZ_OutstandingFautt_States for Channel_2

Upconverter_System.INF_CAT\
EGORY;
)

(@RULE= R1
(@LHS=

(Is (<_SUBSYSTEMS_>.POgERLEVEL_OUT)
("HIGH"))

(Yes

(<IHIGH_POWER_FAULTSTATESI>.VERIFIED))
)

(@HYPO= Diagnose_HIGH_Power_Fault_States)
)

(@RULE= R2

(@LHS=

(Is (<ISUBSYSTEMSI>.POMERLEVEL_OUT)
(.LOW.))

(Yes

(<ILOW_POWER_FAULT_STATESI>.VERIFIED))
)

(@HYPO= Diagnose_LOW_Power_Fault_States)
)

(@RULE= R3

(@LHS=

(is (<ISUBSYSTEMSI>.POMER_LEVEL_OUT)
("ZERO"))

(Yes

(<IZERO POWER_FAULT STATESI>.VERIF[ED))
)

(@HYPO= Diagnose_ZERO_Power_Fault_States)
)

203

APPENDIX H

SITE RELATED PUBLICATIONS

[11

[21

[31

[4]

[5]

[6]

[71

[81

[9]

[lO]

[11]

Bagwell, James W., ",4 @stem for the Simulation and Evaluation of Satellite Communication
Networks," 10_ AIAA Communication Satellite Systems Conference, March 1984.

Budinger, James M., "A Burst Cotnpression and Expansion Technique for Variable Rate Users

in Satellite-Switched TDMA Networks," 13_ AIAA International Communication Satellite Systems
Conference, March 1990.

Fujikawa, Gene, Conroy, Martin J., Saunders, Alan L., Pope, Dale E., "Experimental Radio

Frequency Link for Ka-Band Communications Applications," NASA TM, June 1988.

Fujikawa, Gene, Kerezewski, Robert J., "Performance of a Ka-Band Satellite @stem Under

Variable Signal Power Conditions," 1987 IEEE MTT Microwave Symposium, June 1987.

Gould, George R., ",4 Modular Approach for Satellite Communication Ground Terminals," 10_

AIAA Communication Satellite Systems Conference, January 1984.

Ivancic, William D., Andro, Monty, Nagy, Lawrence A., Budinger, James M., Shalkhauser,

Mary Jo W., "Satellite Matrix Switched Time Division Multiple Access Network Simulation and
Evaluation," NASA TP, October 1989.

Ivancic, William D., Andro, Monty, Nagy, Lawrence A., Budinger, James M., Shalkhauser,

Mary Jo W., "Satellite Matrix Switched Time Division Multiple Access Network Simulation and

Evaluation," 13_ AIAA International Communication Satellite Systems Conference, March 1990.

Kerczewski, Robert J., ",4 Study of the Effects of Group Delay Distortion of a SMSK Satellite

Communications Channel," NASA TM, April 1987.

Kerczewski, Robert J., "The Bit-Error Rate Performance of a Satellite Matrix Switch." 12_

AIAA Communication Satellite Systems Conference, March 1988.

Kerczewski, Robert J., Daugherty, Elaine S., Kramarchuk, Ihor, "Automated Measurement

of the Bit-Error Rate as a Function of Signal-to-Noise Ratio for Microwave Communication

@stems, _ 29 _ Automatic RF Techniques Group Conference, June 1987.

Kerczewski, Robert J., Daugherty, Elaine S., Kramarchuk, lhor, "Gauge Bit-Error Rate as

a Function of Signal-to-Noise Ratio," Microwaves and RF Magazine, March 1988.

204

205

[12] Kerezewsld, Robert J., Fujikawa, Gene, "Performance Measures for a Laboratory-Simulated

30/20 GHz Communication Satellite Transponder," 13_ AIAA International Communication
Satellite Systems Conference, March 1990.

[13] Kerczewski, Robert J., Fujikawa, Gene, Svoboda, James A., Lizanich, Paul, "Effects of

Amplitude Distortion and IF Equalization on Satellite Communication System Bit-Error Rate

Performance," 13 _ AIAA International Communication Satellite Systems Conference, March
1990.

[14] Kerczewski, Robert J., Ponchak, George E., Romanofsky, Robert R., "Performance of Five

30 GHz Satellite Receivers," 1989 IEEE MTT International Microwave Symposium, June 1989.

[151 Kerczewski, Robert J., Ponchak, George E., Romanofsky, Robert R., "30 GHz Commercial

Satellite Receivers," Applied Microwave Magazine, August 1989.

[16] Leonard, Regis F., Kerczewski, Robert J., "Radiofrequency Testing of Satellite Segment of

Simulated 30/20 GHz Satellite Communication Systems," NASA TM, November 1985.

I171 Nagy, Lawrence A., "Satellite Range Delay Simulator for a Matrix Switched ?Tree Division

Multiple Access Network Simulation System," 13_ AIAA International Communication Satellite

Systems Conference, March 1990.

[18] Shalkhauser, Kurt A., Fujikawa, Gene, "Bit-Error Rate Testing of High Power 30 GHz

Traveling Wave Tube for Groutut Terminal Applications," NASA TP, October 1986.

[19] Shalkhauser, Kurt A., Kerczewski, Robert J., "Automated Testing of Satellite Communication
Systems," 25 _ Automatic Radiofrequency Techniques Group Conference, June 1985.

[20] Shalkhauser, Kurt A., Nagy, Lawrence A., Svoboda, James S., "Rein-Fade Simulation and

Power Augmentation for Satellite Communication Systems," NASA TM 103134, September 1990.

[21] Shalkhauser, Mary Jo W., "Satellite Ground Terminal User Simulation," NASA TM, January
1988.

[22] Shalkhauser, Mary Jo W., "Design and Implementation of a Microcomputer-Based User
Interface Controller for Bursted Data Communications Satellite Ground Terminals," NASA TM,
December 1988.

[23] Shalkhauser, Mary Jo W., Budinger, James M., "Digitally Modulated Bit-Error-Rate

Measurement System for Microwave Component Evaluation," NASA TP, July 1989.

[24] Wald, Lawrence W., "Characterization of a 30 GHz IMPA I7" Solid State Amplifier," NASA TM,

July 1988.

[251 Windmiller, Mary Jo, "Unique Bit-Error-Rate Measurement System for Satellite Communication

Systems," NASA TP, March 1987.

